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a b s t r a c t

The N400 component of the event-related brain potential is a neural signal of processing

difficulty. In the language domain, it is widely believed to be sensitive to the degree to

which a given word or its semantic features have been preactivated in the brain based on

the preceding context. However, it has also been shown that the brain often preactivates

many words in parallel. It is currently unknown whether the N400 is also affected by the

preactivations of alternative words other than the stimulus that is actually presented. This

leaves a weak link in the derivation chaindhow can we use the N400 to understand the

mechanisms of preactivation if we do not know what it indexes? This study directly ad-

dresses this gap. We estimate the extent to which all words in a lexicon are preactivated in

a given context using the predictions of contemporary large language models. We then

directly compare two competing possibilities: that the amplitude of the N400 is sensitive

only to the extent to which the stimulus is preactivated, and that it is also sensitive to the

preactivation states of the alternatives. We find evidence of the former. This result allows

for better grounded inferences about the mechanisms underlying the N400, lexical pre-

activation in the brain, and language processing more generally.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Perhaps the best studied neural signal of language compre-

hension, the N400 is a negative component of the event-

related brain potential peaking roughly 400 msec after the

presentation of a stimulus (Kutas & Federmeier, 2011; Kutas &

Hillyard, 1980, 1984). Studying the amplitude of the N400 has

provided key evidence about language processingdmost
. Michaelov), bkbergen@

Elsevier Ltd. This is an o
notably that words and their meanings are preactivated in the

brain before they are encountered during online language

comprehension, and that this preactivation is correlated with

the extent to which the words are contextually predictable

(Federmeier, 2021; Kuperberg et al., 2020; Kutas et al., 2011;

Kutas& Federmeier, 2011; Kutas&Hillyard, 1984; Van Petten&

Luka, 2012). Specifically, the amplitude of the N400 response is

large (more negative) by default, and is reduced in proportion

to the extent that the word is predictable (Dambacher et al.,
ucsd.edu (B.K. Bergen).
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2006; Federmeier, 2021; Payne et al., 2015; Van Petten, 1993;

Van Petten & Kutas, 1990, 1991; Van Petten & Luka, 2012). The

predictability effect has been replicated numerous times

when predictability is operationalized as cloze probability

(Kutas & Federmeier, 2011; Kutas & Hillyard, 1984), the pro-

portion of participants in a norming study to fill in a gap in a

sentence with a specific word (Taylor, 1953, 1957). More

recently, this has also been found to be the case when pre-

dictability is operationalized using the predictions of language

models (Aurnhammer& Frank, 2019; Frank et al., 2015; Merkx&

Frank, 2021; Michaelov et al., 2022, 2023; Szewczyk &

Federmeier, 2022; Yan & Jaeger, 2020), computational sys-

tems designed to predict the probability of a word in context

based on the statistics of language (Jurafsky & Martin, 2023).

However, while it is by now widely accepted that the

amplitude of the N400 response to a word reflects its pre-

activation, there is a weak link in the derivation

chaindexactly how the N400 indexes this preactivation is not

clear. The current general consensus is that the amplitude of

the N400 response to a word only reflects the extent to which

the word or its semantic content were preactivated before the

word was encountered (DeLong et al., 2014; DeLong & Kutas,

2020; Federmeier, 2021; Federmeier et al., 2007; Kuperberg

et al., 2020; Kutas et al., 2011; Thornhill & Van Petten, 2012;

Van Petten & Luka, 2012). We refer to this as the stimulus-

dependent account.

The main kind of evidence supporting this idea comes

from the N400's resilience to variability. A key line of research

in this area involves looking at the effect of sentence

constraint on the N400. The term sentence constraint in this

context refers to the cloze probability of the highest-cloze

continuation of a sentencedif the highest-cloze continua-

tion has a high cloze probability, the sentence has a high

constraint, while if it has a low probability, the sentence has a

low constraint. The central finding is that with cloze proba-

bility as a metric of contextual predictability, sentence

constraint does not impact N400 amplitude at all; only the

cloze probability of the stimulus word itself does (Federmeier

et al., 2002, 2007; Federmeier, 2007, Otten& Berkum, 2008; Van

Petten et al., 1999; Vissers et al., 2006; Wlotko & Federmeier,

2007; for review see Federmeier, 2021; Kuperberg et al., 2020;

Van Petten& Luka, 2012). For example, Federmeier et al. (2007)

find that if a word such as look has a low cloze probability, it

elicits a large N400 response no matter whether the preceding

context is strongly constraining, such as in the children went

outside to look (highest-cloze completion: play), or only weakly

constraining, such as in Joy was too frightened to look (highest-

cloze completion: move). The reliability of the effect across

contexts with different degrees of constraint suggests that

only the contextual predictability of the stimulus that is pre-

sented, and not the predictability of the most likely alternate

word, impacts N400 amplitude.

However, this kind of finding still does not rule out the

possibility that preactivation of other words can impact N400

amplitude. The aforementioned experiments only consider

the extent towhich twowords (the highest-cloze continuation

and the stimulus word) are preactivated. But many candidate

words are typically possible in any position. Lexical prediction

has been theorized to involve the graded preactivation of a

more than two words, ranging from a few candidates, as
proposed by Brothers and Kuperberg (2021) to ‘large portions

of [the] lexicon’, as proposed by Smith and Levy (2013). If the

N400 truly does index processing difficulty, this processing

difficultymight include not only the effort required to activate

neural representations associated with the actual stimulus,

but also inhibition of the neural representations associated

with other possible stimuli, as some researchers have argued

(Debruille, 2007; Fitz & Chang, 2019; Hale, 2001; Hoeks et al.,

2004). We refer to this as the distribution-dependent account in

line with the idea that the N400 reflects the full distribution of

stimulus preactivation across possible next words.

One approach to evaluating whether a larger cohort of

predicted words affects the N400 is to create an aggregate

metric derived from the cloze probabilities of all completions

generated in the cloze task such as entropy (as in Stone et al.,

2022). However, cloze has its limitations. For example, it is

well-established that words with cloze probabilities of zero

can vary in their degree of preactivation (see, e.g., DeLong

et al., 2019; Ito et al., 2016; Metusalem et al., 2012). An alter-

native approach is to include information about potential

preactivation across the entire lexicon (and thus provide a

more complete assessment of alternate word predictability)

by modeling preactivation with language models, which,

given any context, can provide a probability distribution over

all words in their vocabulary (Jurafsky & Martin, 2023).

While language models have been successfully used to

predict N400 amplitudes recorded from experimental partici-

pants, thus far this has only involved stimulus-dependent

metricsdnamely, surprisal and probability (Aurnhammer &

Frank, 2019; Frank et al., 2015; Merkx & Frank, 2021;

Michaelov et al., 2022, 2023; Szewczyk& Federmeier, 2022; Yan

& Jaeger, 2020). To the best of our knowledge, no study has

thus far attempted to directly test whether N400 amplitude

can be predicted by the probability assigned to any word other

than the stimulus itself by a language model, and only one

(Frank et al., 2015) has tested a metric even in part derived

from the whole probability distribution. Because language

models are currently the only way to calculate the contextual

probability of all words in the lexicon, it is thus the case that

the question of whether the amplitude of the N400 is affected

by the extent to which words other than the stimulus itself

were predicted has not been sufficiently investigated for any

conclusions to be drawn. This severely limits the inferences

we can draw from the N400 effect. Namely, we do not know

whether the N400 indexes the preactivation of the stimulus

alone, or also its alternatives.

This presents a problem for theoretical advancement.

Making progress on neural mechanisms of language

comprehension relies on reliable and sensitive signals such as

the N400. Researchers hope to draw inferences from effects

like the N400 about, for instance, what is preactivated during

comprehension. But to do this requires a precise account of

what affects those signals. In addition to presenting an

obstacle to our understanding of language comprehension

more generallydfor example, whether language processing

fits into our general understanding of predictive processing in

the braindthe weak derivation link presents a challenge for

investigating how certain linguistic features impact pre-

activation. The majority of contemporary work on the N400

investigates how the context preceding a stimulus impacts

https://doi.org/10.1016/j.cortex.2023.08.001
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the extent to which the stimulus is preactivated in the brain

(for review, see, e.g., Federmeier, 2021; Kuperberg et al., 2020),

but uncertainty about whether the N400 reflects only the

preactivation of the stimulus drastically reduces the scope of

what we can hope to understand. This issue is especially

important in a field where noise and small effect sizes can

often lead to inconsistent findings across studies (for a recent

discussion, see Nicenboim et al., 2020).

The aim of this study, therefore, is to test whether, to the

extent that this can be evaluated using current methods, the

amplitude of the N400 response solely reflects the pre-

activation of the stimulus presented, or whether it in some

way also reflects the inhibition of alternatives. To do this, we

use state-of-the-art large languagemodels. This is because, as

previously stated, the conventional cloze approach fails to

capture preactivation that varies systematically between

different words with a cloze probability of zero (e.g., DeLong

et al., 2019; Ito et al., 2016; Metusalem et al., 2012). This may

not just be a methodological issue; as discussed in subsection

2.1, it is likely that the task itself (which asks for the best

completion of a sentence) may preclude more anomalous

words being filled in. But even if the issue is purely method-

ological, human vocabularies are very large, on the order of

tens of thousands of words (Brysbaert et al., 2016), making it

impractical to collect judgments from enough participants for

every possible word. There is also reason to believe that the

probabilities derived from language models are actually more

informative than cloze. In addition to being more clearly

interpretable from an information-processing perspectived-

they reflect the contextual probabilities of words based on the

statistics of language alonedrecent work has shown that the

predictions of contemporary language models can out-

perform cloze probability as predictors of N400 amplitude

(Michaelov et al., 2022). Thus, even if it were possible to collect

and calculate cloze values for all words in the vocabulary, it

might still be preferable to use language models.
2. Past approaches

2.1. Constraint

Since early work on the N400 (Kutas & Hillyard, 1984), cloze

probability has been used to operationalize the extent to

which words are preactivated such that their preactivation

impacts N400 amplitude. Most subsequent work explicitly or

implicitly assumes that the amplitude of theN400 is only (or at

least, most importantly) correlated with the extent to which

the stimulus itself is preactivated.

However, more recently, there have been attempts to

consider the how the broader, distributed ‘landscape of

activation’ (Federmeier, 2021, p. 1) impacts N400 amplitude.

An exemplary case is the study carried out by Federmeier

et al. (2007), who test whether sentence constraintdthe

cloze probability of the most probable word in con-

textdimpacts N400 amplitude. The idea is that if inhibition

does impact N400 amplitude, one should expect to see it

most clearly with low-probability stimuli in high-constraint

sentences. Under an distribution-dependent account, the

high-probability completion is preactivated to a large extent,
and thus, when this prediction is violated, we should expect

a strong inhibition response. But as discussed, Federmeier

et al. (2007) did not find any effect of constraint, leading

them, and many other researchers (DeLong & Kutas, 2020;

Federmeier, 2007, 2021; Federmeier et al., 2002; Kuperberg

et al., 2020; Kutas et al., 2011; Otten & Berkum, 2008;

Thornhill & Van Petten, 2012; Van Petten et al., 1999; Van

Petten & Luka, 2012; Vissers et al., 2006; Wlotko &

Federmeier, 2007) to argue that N400 amplitude does not

reflect inhibition. Under these accounts, N400 amplitude

only reflects new activation elicited by the stimulusdthat is,

the activation of neural representations that were not

already preactivated by the context.

However, as argued earlier, this approach does not speak to

failed predictions for words other than the best completion,

since it only takes into account the activation of the highest-

probability item. Moreover, word prediction might not line-

arly impact N400 amplitudedit might or might not be ten

times harder to inhibit a word with a probability of 50% than a

word with a probability of 5%. And finally, this approach as-

sumes that cloze probability actually reflects the proportion of

activation given to a specific candidate word (as argued by

Brothers & Kuperberg, 2021; Staub et al., 2015). While it may

intuitively seem a given that cloze probability should be

directly proportional to the relative activation level of each

word, this is not necessarily the case, especially given that the

cloze task may have specific deforming effects on the proba-

bility distribution. One possible example of this can be illus-

trated by looking at the related anomaly effect, where an

anomalous word that is semantically related to the best

(highest-cloze) completion of a sentence elicits a smaller N400

response than an anomalous word that is not (for review, see

Amsel et al., 2015; DeLong et al., 2019; Federmeier & Kutas,

1999; Ito et al., 2016; Kutas & Hillyard, 1984; Metusalem

et al., 2012). In such cases, while both semantically related

and unrelated anomalous words have a cloze probability of

zero (or almost zero) but elicit N400 responses of different

amplitudes, when we look at language model predictions, we

see that the semantically related words have a higher proba-

bility (Michaelov & Bergen, 2022a). This suggests that such

semantically related anomalous words are in fact more likely

than their unrelated counterparts, but this is not detectable by

looking at cloze probability. In this case, it is likely that the

cloze task discourages participants from filling in anomalous

words, even if they are more likely in the context, and thus

more strongly preactivated (for related discussion, see

Michaelov et al., 2022; Smith & Levy, 2011).

2.2. Surprisal

One attempt to consider the full distribution of prediction is

that of Levy (2008). Levy (2008) frames lexical processing dif-

ficulty as involving the effort required to reallocate neuro-

cognitive resources upon encountering a stimulus, based on

altering the entire predicted probability distribution. To do

this Levy (2008) proposes that the relevant metric should be

the KullbackeLeibler divergence (Kullback & Leibler, 1951)

between the probability distribution of predictions and the

‘true’ probability distributionda distribution where the actual

next word (i.e., the stimulus word) has a probability of 1, and

https://doi.org/10.1016/j.cortex.2023.08.001
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all other words have a probability of 0. It should be noted that

while Levy's (2008) account is based on considering reading

times as an index of lexical processing difficulty, it may in fact

be evenmore applicable to the N400. As discussed, the N400 is

frequently thought to reflect the extent to which encountering

a stimulus shapes the activation of neurocognitive represen-

tations, or more specifically, indexes the processing difficulty

associated with updating the activation states of the brain to

bring the total landscape of activation in the brain in line with

the new stimulus.

The KullbackeLeibler divergence thus appears to reflect

both the extent to which the true stimulus was predicted and

the extent to which other words were predicted. The problem,

however, is that Levy (2008) finds that the KullbackeLeibler

divergence between the probability distribution that is the

output of language models and the true probability distribu-

tion is mathematically equivalent to the surprisal S of the

stimulus itself, that is, the negative logarithm of the proba-

bility p of a word wi given its preceding context, shown in

Equation (1).

S ¼ �logðpðwiÞ (1)

Thus, while under an information-theoretic account, sur-

prisal may be a good characterization of processing difficulty

envisioned as the updating of activation states in the

braindand indeed, Hale (2001) proposes surprisal as a metric

of lexical processing difficulty that reflects the difficulty of

disconfirming alternativesdit is critically determined solely

by the predicted probability of the stimulus word. From a

theoretical perspective, this is not a problem. The fact that the

KullbackeLeibler divergence between the true and predicted

probability distributions is equivalent to surprisal may actu-

ally help to explain the finding that the N400 does not appear

to be sensitive to constraintdif the brain reflects information-

theoretic principles, the effort required to update our proba-

bility distribution might indeed only be determined by the

probability of the stimulus (with a logarithmic linking func-

tion). Empirically, surprisal has also been incredibly success-

ful in the prediction and modeling of the N400 (Aurnhammer

& Frank, 2019; Frank et al., 2015; Merkx & Frank, 2021;

Michaelov & Bergen, 2020; Parviz et al., 2011; Szewczyk &

Federmeier, 2022), with one recent study even finding the

surprisal of the GPT-3 languagemodel (Brown et al., 2020) to be

the best predictor of the N400 measured thus far, beating

other language models and even cloze probability, the ca-

nonical metric of word probability (Michaelov et al., 2022).

Nonetheless, because surprisal is not affected at all by the

extent to which other words are preactivated, it cannot be

used to investigate whether the preactivation of non-stimulus

words impacts N400 amplitude.

2.3. L1 distance

Another metric that ostensibly includes information about

the preactivation states of non-stimuli is developed by Fitz

and Chang (2019). Fitz and Chang (2019) propose that rather

than simply indexing prediction error of some kind, the N400

has a functional significance in itself as a learning signal

used to update our neurocognitive representations of the
statistics of language for use in production (for related ac-

counts, see, e.g., Federmeier, 2021; Fitz & Chang, 2019;

Kuperberg et al., 2020; MacDonald, 2013; Pickering & Garrod,

2013). For this reason, Fitz and Chang (2019) take the true and

predicted probabilities for each word in their model's vo-

cabulary, and then model N400 amplitude as the sum of

absolute error for each worddthat is, the sum of the differ-

ence between the true and predicted probability of each

word. This is equivalent to the Manhattan distance or L1

norm between the predicted and true probability distribu-

tions. However, like surprisal, this metric is in fact only

dependent on the probability of the stimulus, as we show in

Appendix A. Specifically, L1 distance is has relationship to

p(wi) shown in Equation (2).

L1 ¼ 2� 2pðwiÞ (2)

Like surprisal, L1 distance is a metric based on the distance

between the true and predicted probability distributions, and

like surprisal, it is in fact only dependent on the predicted

probability of the stimulus. Again, this is a theoretically

meaningful result. If we take the idea of proportional pre-

activationdthat is, the idea that words are preactivated in

proportion to probabilitydseriously, and expect the processing

difficulty indexed by theN400 to reflect the sumof the absolute

error between the true and predicted probabilities of words,

then this mathematical result suggests that we only need to

calculate the probability of the stimulus itself in order to un-

derstand the N400 response. Indeed, Fitz and Chang (2019) are

successful in using L1 distance to model N400 amplitude,

though it should be noted that Fitz and Chang's (2019) main

model is not a language model in the strict sense because it is

trained using structured semantic information (though its

output is still a probability distribution over words).

However, as is the case with KullbackeLeibler diver-

gence, this means that L1 distance cannot be used to

investigate the question of whether the possible inhibition

of preactivated stimuli impacts the processing difficulty

indexed by the N400. But by the same token, what it does

tell us is that if the distribution-dependent account of the

N400 is true, the mathematical relationship between the

true and predicted probability distributions cannot be L1

distance. The same is true for KullbackeLeibler divergence.

However, this does not rule out the possibility that other

difference metrics between the true and predicted proba-

bility distribution could capture the effectdeven including

other Lk distance metrics. For example, it could be that the

L1 distance metric under-estimates the difficulty of inhibit-

ing high-probability items relative to low-probability items,

something which might be detectable using the L2

(Euclidean) distance as the relevant metric. On the other

hand, it might be that using L1 distance under-estimates the

difficulty in inhibiting low-probability items relative to high-

probability items, something that could be addressed by

using the L0.5 distance as a metric.

2.4. Entropy

A final metric that has been used to predict N400 amplitude

(Stone et al., 2022), butwhich does in fact take into account the

https://doi.org/10.1016/j.cortex.2023.08.001
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full probability distribution of preactivation is entropy

(Shannon, 1948). The equation for entropy H is given in

Equation (3), where bpðwiÞ is the predicted probability of wi in

context.

H ¼ �
X
i

bpðwiÞlog bpðwiÞ (3)

Entropy reflects uncertaintydgiven a probability distribu-

tion over words, the distribution with the highest possible en-

tropy would be a uniform distribution, and the lowest-entropy

distribution is one where one word has a probability of 1 and

the remaining words have a probability of 0. A theoretical ac-

count of how entropy should influence N400 amplitude is not

necessarily intuitive. In linewithwork on constraint, onemight

expect that in cases with low-probability stimuli, a low-entropy

distributionmight lead to themost processing difficulty, as this

would result from a probability distribution where one very

high-probability word is greatly preactivated. On the other

hand, Stone et al. (2022) hypothesize that we might be less

likely to make predictions in situations with higher entro-

pydwhere there are a larger number of possible continuations

of a sentencedand thus, higher entropy should be associated

with larger N400 responses. In this way, either a positive or

negative relationship between entropy and N400 amplitude is

plausible based on previous work.

Of course, the fact that previous work on the N400 and

language comprehension more generally can lead to multiple

predictions is not in itself an issuedthis is something that

could be resolved empirically, if indeed it is the case that en-

tropy impacts N400 amplitude. But there does remain a

fundamental problem with entropy as a metric of processing

difficulty: it does not take into account the actual stimulus.

Specifically, it only reflects the activation state before the

word is encountered. Thus, if stimulus preactivation itself

impacts processing difficulty, entropy alone cannot be used to

model it. In the one study the one study that directly tests the

effect of entropy on N400 amplitude, Stone et al. (2022) do not

find it to be a significant predictor, either as a main effect or in

interaction with word probability. However, it is worth noting

that Stone et al. (2022) calculate their entropy based on cloze

probabilities, and thus only a limited number of possible

preactivations are considereddthe maximum number of

different responses to filling in the blank in the cloze task in

their study is 8 (Stone et al., 2021). If there are differences in

levels of preactivation based on contextual probability beyond

that reflected by cloze, as previously discussed, then this

approach does not take into account the full distribution of

preactivation. Thus, despite the aforementioned theoretical

problems with entropy, it is still valuable to directly test how

well entropy calculated from the full distribution of pre-

dictionsdfor example, by using probabilities derived from a

language modeldcan predict N400 amplitude, which we do in

the present work. This is especially so given the recent find-

ings that entropy appears to correlate with some of the neural

activity that occurs during language comprehension when

measured using magnetoencephalography (Brodbeck et al.,

2022; Huizeling et al., 2022).

One metric that at least at first glance would appear to be

better suited to testing whether N400 amplitude is sensitive to

the probability of words other than the stimulus is cross-
entropy. Cross-entropy is a measure of the difference between

two distributions that is often used as a loss function

(Goodfellow et al., 2016; Jurafsky&Martin, 2023), and thus is in

line with some theories of the N400 (e.g., Fitz & Chang, 2019).

However, cross-entropy is the sum of the KullbackeLeibler

divergence between the true and predicted probability distri-

butions and the entropy of the true probability distribution

(Goodfellow et al., 2016, p. 73). Given that the entropy of the

true probability distribution is zero, this means that, at least

for language models, the cross-entropy is equivalent to

KullbackeLeibler divergence, and thus, surprisal. And so this

metric is also only dependent of the probability of the

stimulus.

There are also several other related metrics that bear

mentioning. Frank et al. (2015) and Aurnhammer and Frank

(2019) test how well next-word entropy, the difference between

entropy and next-word entropy, and two forms of what they

refer to as Lookahead Information Gain predict N400 amplitude

as well as reading time. However, next-word entropy in this

case refers to the entropy of the probability distribution of

the predictions for the word after the stimulus, and thus does

not take into account the preactivation at the time that the

stimulus is encountered, or the actual stimulus itself. The

two Lookahead Information Gain metrics are also both based

on this probability distribution for the following word.

Finally, it should also be noted that none of these four met-

rics were found to be good at modeling the N400

(Aurnhammer and Frank, 2019; Frank et al., 2015).
3. Language models and the N400

Using the predictions of language models rather than a

human-derived metric such as cloze probability can evoke

skepticism. As articulated above, language models allow us to

test hypotheses about how the full distribution of pre-

activation may impact N400 amplitude, but this is naturally

only a viable strategy if language model predictions bear a

clear relationship to this preactivation. Intuitively itmay seem

problematic to use the predictions derived from systems

trained only on text data with no grounding in sensorimotor

experience of the world or explicit propositional knowledge to

model the kinds of predictions that humansmaymake during

language comprehension. However, as discussed, recent work

has shown that the predictions of languagemodels canmodel

N400 amplitude incredibly successfully (Aurnhammer &

Frank, 2019; Frank et al., 2015; Merkx & Frank, 2021;

Michaelov & Bergen, 2020, 2022a; Michaelov et al., 2021, 2023;

Szewczyk & Federmeier, 2022).

Thus, at worst, language models appear to make pre-

dictions in line with the preactivation that underlies the N400

response. This in itself would not necessarily be surprising.

The language we use encodes information about the world

and our understanding of it to such an extent that its statistics

can be used to calculate the semantic similarity of words

(Landauer et al., 1998), identify structured semantic relations

between words (Mikolov, Sutskever, et al., 2013), and even

identify cultural biases (Bolukbasi et al., 2016). Thus, it may be

that the statistics of language are able to approximate the

statistics of the worlddwe are more likely to talk about more

https://doi.org/10.1016/j.cortex.2023.08.001
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likely things. Therefore, even if the preactivation that occurs

during online language comprehension is in fact largely based

on our knowledge of the world (direct or indirect), this may be

approximated well enough by the statistics of language that

those statistics may be informative about neurocognitive

systems underlying language comprehension.

However, there is a stronger alternative possibility:

humans may actually be using the statistics of language in

preactivation as part of language comprehension. Given the

amount of information contained in the statistics of language

(contemporary language models continue to improve perfor-

mance at increasingly impressive tasks, see, e.g., Nie et al.,

2020; Srivastava et al., 2022; Wang, Pruksachatkun, et al.,

2019; Wang, Singh, et al., 2019), it would not in principle be

surprising if the human language comprehension system took

advantage of this. In fact, this would bring language process-

ing in line with evidence for predictive coding in other do-

mains, in which statistical learning is thought to play a key

role. For example, in visual processing, there is evidence that

environmental statistics are relevant from the level of neu-

rons in the primary visual cortex to the overall encoding of

scenes (de Lange et al., 2018; Rao & Ballard, 1999; Sherman &

Turk-Browne, 2020).

In the domain of language specifically, learning from sta-

tistical information has been argued to be vital in acquisition,

production, and comprehension (e.g., Ambridge et al., 2014; de

Marneffe et al., 2012; Elman, 2009; Gerken, 2006, 2007; G�omez

& Gerken, 2000; MacDonald, 2013; Newport and Aslin, 2004;

Pickering & Garrod, 2007, 2013; Romberg & Saffran, 2010;

Saffran et al., 1996; Seidenberg, 1997; Sherman et al., 2020).

Indeed, there is already substantial evidence that the N400 is

sensitive to factors that clearly relate to the statistics of lan-

guage rather than just the organization of our semantic rep-

resentations. Most notably, the N400 is sensitive to word

frequencydwords that are more frequent tend to elicit

smaller N400 responses (Dambacher et al., 2006; Fischer-Baum

et al., 2014; Kutas & Federmeier, 2011; Rugg, 1990; Van Petten,

1993; Van Petten & Kutas, 1990) and their magneto-

encephalographic equivalent (Halgren et al., 2002). Thus,

rather than simply operationalizing predictability, language

models may actually function as (computational-level)

cognitive models of the neurocognitive system underlying

lexical preactivation in the brainda system engaging in lexi-

cal prediction at least in part based on the statistics of

language.
4. The present study

The aim of the present study is to explore whether the

amplitude of the N400 response is impacted not only by the

extent to which a given stimulus was preactivated by its

preceding context, but also by the extent to which other

possible stimuli were preactivated. Most contemporary theo-

retical accounts of the N400, and by extension, the neuro-

cognitive processes underlying language comprehension,

assume that solely the stimuluswordmatters. But this has not

yet been convincingly demonstrated.

To investigate this, we use language models to calculate

several distribution-dependent metricsdthat is, metrics that
operationalize the difference between the true and predicted

probability distributiondspecifically, L0.5 distance, L2 dis-

tance, Hellinger distance, c2 distance, and cosine distance, as

well as the previously-investigated constraint and entropy

metrics (the equations for all metrics are presented in Table 2).

We then test whether any of these can account for variance in

N400 amplitude above and beyond that explained by predict-

ability alone. We test this on the large N400 dataset made

available by Szewczyk and Federmeier (2022), comprised of

data from four published studies (Federmeier et al., 2007;

Hubbard et al., 2019; Szewczyk et al., 2022; Wlotko &

Federmeier, 2012) and one previously-unpublished ERP study.

We divide our study into two experiments. In the first, we

test howwell the predictabilitymetrics calculated using seven

contemporary language models predict N400 amplitude.

Because our study tests whether metrics operationalizing the

whole landscape of word preactivation predict N400 ampli-

tude above and beyond the predictability of the stimulus itself,

our first task is to find the best operationalization of predict-

ability to compare these to. Previous work shows that sur-

prisal is overall a better predictor of N400 amplitude than

probability is (Szewczyk & Federmeier, 2022; Yan & Jaeger,

2020), especially for the best-performing models (Michaelov

& Bergen, 2022b). However, Szewczyk and Federmeier (2022),

analyzing the same dataset that we analyze, found that un-

transformed probability can also explain additional variance

in N400 amplitude, especially for higher-probability items. As

a result, we use bothmetrics as predictors in our linearmixed-

effects regressions assessing how well different language

models predict N400 amplitude.

In Experiment 2, we run our tests on the predictions of the

best-performing language model: GPT-J (Wang & Komatsuzaki,

2021). First, we test whether any of the distribution-dependent

metrics, entropy, or constraint out-perform predictability as

predictors of N400 amplitude on their own, using the overall fit

of linear mixed-effects regressions. We then test whether

adding any of these to regressions already including the

stimulus-only predictability variables improves model fit. If so,

this would suggest that they explain variance not explained by

predictability, and thus would provide evidence that the

amplitude of the N400 response is impacted by the effort

required to inhibit the activation of words other than the elic-

iting stimulus itself. If not, this would add to the evidence from

research on sentence constraint suggesting that only the

probability of the stimulus itself impacts N400 amplitude. The

collection ofmetrics of each type that we use has, to the best of

our knowledge, not been used previously to model N400

amplitude.
5. Experiment 1

5.1. Introduction

The overall purpose of the current study is to model the full

landscape of neural preactivation using the probability of

language models, and to use these probability distributions to

investigate whether the amplitude of the N400 response to a

stimulus is sensitive not only the extent to which it is pre-

activated, but also the extent to which alternatives are

https://doi.org/10.1016/j.cortex.2023.08.001
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preactivated. To do this, in Experiment 1, we first select a

language model that makes predictions that are highly

correlated with word preactivation.

Previous work shows that surprisal from trans-

formersdthe current state-of-the-art language model archi-

tecturedcorrelate most closely with N400 amplitude

compared with other models architectures (Merkx & Frank,

2021; Michaelov et al., 2022). In fact, the surprisals calculated

using some of the most powerful models testeddALBERT,

RoBERTa, and GPT-3dhave been found to out-perform cloze

probability as predictors of N400 amplitude on one dataset

(Michaelov et al., 2022). Given that the full probability distri-

bution of GPT-3 is not directly accessible, it is not suitable for

the present study. However, in recent work by Michaelov and

Bergen (2022b), a much larger selection of contemporary

transformer language modelsdincluding ALBERT, RoBERTa,

and a number of models released after Michaelov et al.

(2022)dare evaluated in terms of how well their probability

and surprisal predicts N400 amplitude. Because surprisal ap-

pears to be a better predictor than probability overall, for the

present study, we also include the two monolingual (i.e.,

trained only on English) transformer language models that

generate surprisals which Michaelov and Bergen (2022b) find

to be better correlated with N400 amplitude than ALBERT and

RoBERTadnamely, GPT-J and OPT 6.7B. Since the publication

of Michaelov and Bergen (2022b), a number of new language

models have been released, and thus, we include 3 additional

languagemodelswith a similar number of parameters as GPT-

J and OPT 6.7B that have also been trained on datasets of the

same order of magnitude: Pythia 6.9B (Biderman et al., 2023),

Cerebras-GPT 6.7B (Dey et al., 2023), and StableLM-Base-Alpha

7B (Stability AI, 2023).

One thing that should be noted is that the set of models

used comprises both autoregressive language models, those

trained to predict a word based on only the preceding context;

and masked language models, those trained to also predict

based on the following context. In the present study, all

models are only presented with the preceding context as

humans were in the original N400 experiments, but it is un-

clear whether the fact that masked language models are also

trained to ‘postdict’ (Huettig, 2015) makes them more or less

human-like. While it would be impossible for us to use such

postdictions during online comprehension, it is possible that

we might still learn these reverse probabilities. Thus, in

addition to the more practical question of which language

model is best able to make predictions that correlate with the

preactivation of neural representations during online lan-

guage comprehension, the results of the present study may

also shed light on what kinds of language statistics may be

learned by humans.

5.2. Method

5.2.1. Dataset
The experimental stimuli and N400 data used in the present

study come from a large dataset recently made available on-

line by Szewczyk and Federmeier (2022) at https://osf.io/

urvax/. This dataset is comprised of data from five experi-

mental studies, which are described in more detail in this

section. Four of the five experiments are from previously
published papers (Federmeier et al., 2007; Hubbard et al., 2019;

Szewczyk et al., 2022;Wlotko& Federmeier, 2012).We selected

this dataset due to the fact that it covers a large number of

stimuli, contains data from a large number of experimental

participants, and is preprocessed in a consistent way across

studies, so analyses can be run on all the data together.

Furthermore, this dataset is well-suited to answer our main

research question (addressed in Experiment 2) because, as will

be discussed, all stimuli are based on those from the

Federmeier et al. (2007) studydthat is, the previously-

discussed study that tested the effect of sentence constraint.

For this reason, the stimuli were designed such that they

included sentences with both high and low constraints, and

thus vary in the shape of the probability distributions of

possible continuations. While the stimuli were selected based

on constraint calculated using cloze probability, and thus, we

expect some variation between this and constraint as calcu-

lated using our language models (as well as between models),

this allows us our analyses to account for a wide range of

possible differences between true and predicted probability

distributions.

In order to calculate probability and surprisal based on the

original stimuli presented to the experimental participants,

we truncated the stimuli such that they included the entire

preceding context, using this as input to the languagemodels.

We then used the languagemodels to calculate the probability

of the critical words in the original stimuli, which we also

negative log-transformed into surprisal. In our analysis, we

only includewords that are represented as a single token in all

language models (i.e., are words in all language models' vo-
cabularies). We only look at single-token critical words for

each model because the other metrics that we calculate in

Experiment 2 are only well-defined for such stimuli, and we

only look at words that are single tokens for all language

models so that we can compare performance across models.

This exclusion criterion was decided before the analyses were

carried out.

The dataset provided by Szewczyk and Federmeier (2022)

provides single-trial N400 data. In it, the amplitude of the

N400 response on a given trial is operationalized as the voltage

amplitude at four centro-parietal electrodes (MiCe, MiPa,

LMCe, RMCe) over the 300e500 msec time window. These

N400 amplitudes are not baseline-corrected; instead, a base-

linedthe mean amplitude in the 100 msec before the pre-

sentation of the stimulusdis included as a variable, and in the

original analysis is included as a covariate (Szewczyk &

Federmeier, 2022).

As discussed, the data from five experiments are included

in the dataset. Federmeier et al.'s (2007) is perhaps the best

known of the studies, testing the effect of constraint on N400

amplitude. This study was built around a 2 � 2 design: sen-

tences either had a high or low constraint, and for each sen-

tence both the best (highest-cloze) completion and a low-cloze

completion were used as critical words. This data subset

included 7856 trials, collected for 564 stimuli from 32 experi-

mental participants.

The second experimental study included in the dataset

was conducted by Wlotko and Federmeier (2012). Stimuli in

this experiment, which were selected from two previous

studies (Federmeier et al., 2007; Wlotko & Federmeier, 2007)

https://osf.io/urvax/
https://osf.io/urvax/
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Table 1 e Details of all the models used in the present
study. Note that the ALBERT model uses shared
parameters, and so the model is larger than the parameter
counts suggest. The number of tokens for RoBERTa is
estimated based on the fact that the dataset is 10 times
larger than that on which ALBERT was trained.

Model Name Parameters Training data (tokens)

ALBERT XXL .24B 3.3B

Cerebras-GPT 6.7B 6.7B 133B

GPT-J 6.1B 300B

OPT 6.7B 6.7B 180B

Pythia 6.9B 6.9B 300B

RoBERTa Large .36B 33B

StableLM-Base-Alpha 7B 7.9B 800B
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were selected to be plausible and vary ‘continuously through

the full range of cloze probability’ (Wlotko& Federmeier, 2012,

p. 359). This experiment contributed data from 4440 trials (300

stimuli; 16 experimental participants) to the dataset.

Third is a dataset from a study carried out by Hubbard et al.

(2019). The stimuli in this study were 192 sentences selected

from the Federmeier et al. (2007) experiment with the same

2 � 2 design: half of the sentences were high-constraint and

half were low constraint; and each sentence had either the

best completion or a low-cloze completion as the critical

word. The data from this experiment included 5705 trials (32

experimental participants).

The final previously-published study included in the

dataset is that of Szewczyk et al. (2022). The stimuli in this

study were based on 168 sentence frames from previously-

published studies including Federmeier et al. (2007), with

high and low-cloze completions for each sentence frame.

Stimuli were then expanded by adding an adjective before the

completion that either increased the cloze probability of the

low-cloze completion or further increased the cloze proba-

bility of the high-cloze completion. Thus there were four

experimental conditions for each item, totaling 672 stimuli.

Data from 4939 trials (32 experimental participants) were

included from this study.

As previously discussed, the dataset also includes data

from an unpublished study. The stimulus selection procedure

is not mentioned in the paper (Szewczyk & Federmeier, 2022);

however, looking at the data, we can see that all stimuli are

present in one of the other four previously-published studies,

and that the stimuli are comprised of a higher-cloze

(mean ¼ 57%) and lower-cloze (mean ¼ 1%) critical word for

each sentence frame. This study contributed 4822 trials (600

stimuli; 26 experimental participants) to the dataset.

Thus, the total dataset provided by Szewczyk and

Federmeier (2022) was made up of 27,762 trials (138 experi-

mental participants). Because of the overlap in stimuli be-

tween the different experiments, the total number of unique

experimental stimuli was 1330. After removing data for

stimuli where critical words are not tokens in all models' vo-
cabulary, our analysis includes data from 25,506 trials (1238

stimuli; 138 experimental participants).

5.2.2. Models
The details of the sevenmodels tested are provided in Table 1.

All models are pretrained transformer language models, four

of which are autoregressivedtrained to predict the next word

given the preceding contextdand two of which are masked

language modelsdtrained to predict a word given the previ-

ous and following context. Note that in this study, we present

all languagemodels with only the preceding context. We used

the PyTorch (Paszke et al., 2019) versions of all models made

available through the transformers (Wolf et al., 2020) Python

(Van Rossum & Drake, 2009) package.

5.2.3. Statistical analysis
All data manipulation, statistical analyses, and graphs were

carried out and produced in R (R Core Team, 2020) using

Rstudio (RStudio Team, 2020) and the tidyverse (Wickham et al.,

2019) and lme4 (Bates et al., 2015) packages. In this paper, we
report how we determined all data exclusions, all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, and all measures in the

study. The sample size and all experimental manipulations

were decided by the researchers who ran the original studies

comprising the dataset (Federmeier et al., 2007; Hubbard et al.,

2019; Szewczyk et al., 2022; Szewczyk & Federmeier, 2022;

Wlotko & Federmeier, 2012). No part of the study procedures

and no part of the analyses were pre-registered prior to the

research being conducted. All data, code, and statistical ana-

lyses are available at https://osf.io/jrsgh.

5.3. Results

We ran each of the preprocessed stimulus contexts through

the seven language models, calculating the probability and

surprisal for each critical word. We then combined this data

with the single trial ERP data provided by the original authors,

using linear mixed-effects regressions to predict N400 ampli-

tude, with each regression including the probability and sur-

prisal calculated using each language model as predictors.

Following Szewczyk and Federmeier (2022), regressions also

included baseline voltage, word frequency (log-transformed),

concreteness, and orthographic neighborhood distance

(OLD20), all of which were provided by Szewczyk and

Federmeier (2022) as covariates. We also included random

intercepts for each subject and sentence frame (each sentence

frame in each experiment was treated as a separate sentence

frame), as well as random slopes of the covariates (baseline

voltage, word frequency, and orthographic neighborhood

distance) for each of these. Following Michaelov et al. (2022),

all variables were z-scored. In order to evaluate the perfor-

mance of each metric, we compared each regression's Akaike

Information Criterion (AIC) (Akaike, 1973), a metric of regres-

sion fit, where a lower AIC indicates a better fit.

Results are presented in Fig. 1, where AICs are are shown

relative to the AIC of a baseline null model with the same

predictors as the other regressions except without surprisal or

probability. As can be seen, the best-performingmodel is GPT-

J (AIC ¼ 58549.22), followed by Pythia 6.9B (AIC ¼ 58567.19),

OPT 6.7B (AIC ¼ 58568.82), Cerebras-GPT 6.7B (AIC ¼ 58590.77),

RoBERTa Large (AIC ¼ 58627.10), StableLM-Base-Alpha 7B

(AIC ¼ 58708.78), and finally, ALBERT XXL (AIC ¼ 58761.13). A

https://osf.io/jrsgh
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Fig. 1 e AICs of regressions including the probability and surprisal calculated from the indicated model as predictors. A

lower AIC indicates a better fit.
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difference in AIC of 4 or more is generally considered to

indicate that the lower-AIC regression has ‘considerably’

more evidential support (Burnham & Anderson, 2004). Thus,

the regression including GPT-J surprisal and probability is

clearly the best-performing regression.

5.4. Discussion

The languagemodel that best predicts N400 amplitude for this

dataset is GPT-J, suggesting that its probability distributions

most closely correlate with the preactivation state underlying

the N400 response. We thus usemetrics calculated fromGPT-J

for the remainder of our analyses.

The results of this experiment differ from the single-

token results of Michaelov and Bergen (2022b) in that all

but one of the autoregressive models tested here (StableLM-

Base-Alpha 7B) performed better than the masked language

models. It should be noted, however, that this result is in line

withMichaelov and Bergen's (2022b) findings when analyzing

the performance of language models at predicting N400

amplitude for stimuli including those made up of more than

one token. Given this and the far larger number of experi-

mental stimuli in the present study (1238 stimuli with single-

token critical words compared to 37 single-token critical

words and even 160 total critical words in Michaelov &

Bergen, 2022b), it is likely that the results of the present

study are more representative of the performance of the

models at predicting N400 amplitude. Whether this is

because the autoregressive architecture is more human-like

or because the autoregressive models were trained on far

more data than the masked language models is a question

for future research.
6. Experiment 2

Equipped with a best-performing language model, we can now

address the main research question, namely, whether the

preactivation of possible stimuli other than the stimulus that

elicits the N400 response can impact the amplitude of the

response. To do this, we select a number of metrics that reflect

the difference between the true and predicted probability dis-

tributionsdthat is, distribution-dependent metricsdas calcu-

lated using GPT-J. Many metrics relating the predicted and

observed probability distributions across words were unsuit-

able for our analysis. Some, as discussed earlier, are linearly

related to a metric of stimulus-dependent predictability. For

example, total variation distance (as given in Gibbs & Su, 2002)

is equivalent to half of the L1 distance between the two distri-

butions and thus is linearly related to probability. Similarly,

because they involve element-wise multiplication between the

distributions, R�enyi divergence (as given in van Erven &

Harremos, 2014) and Bhattacharyya distance (as given in Jain,

1976) simplify such that they become the logarithm of the

stimulus probability multiplied by a constant, and thus, are

directly proportional to surprisal. Other metrics are incalcu-

lable because in the true probability distribution, all words have

a probability of zero with the exception of the true stimulus,

which has a probability of 1. Because the zeros in the true

distribution are meaningful, we do not use smoothing, and

thus, we do not use any metrics that would involve dividing by

or taking the logarithm of zero, e.g., KullbackeLeibler diver-

gence in the opposite direction or information radius (as given

inManning& Schutze, 1999).We therefore selected twometrics

that were both calculable and not linearly related to

https://doi.org/10.1016/j.cortex.2023.08.001
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predictability: c2 distance and Hellinger distance. Beyond the

aforementioned restrictions on suitable metrics, these specific

metrics were not in themselves chosen for any theoretical

reason beyond reflecting a difference between the true and

predicted probability distributions. As discussed, the aim of the

study is to test whether there is an effect of the full probability

distribution on N400 amplitude at all rather than necessarily to

precisely characterize such an effect. If either c2 and Hellinger

distance successfully operationalize the difficulty inhibiting

false predictions, then we should expect a negative correlation

between the metric and N400 amplitude, indicating a stronger

N400 response when there is a greater difference between the

true and predicted probability distributions.

Other metrics were selected based on the theoretical

perspective presented by Fitz and Chang (2019), which con-

siders the probability distributions generated by predictive

models to reflect the relative differences in preactivation be-

tween candidate stimuli, but also considers that these need

not be meaningful as probabilities in themselves. Fitz and

Chang (2019) operationalize the difference in the activation

across all words before and after encountering a stimulus as L1

distance; but as discussed, this is only dependent on the

probability of the true stimulus itself. However, this is not the

case for other Lk distances metrics. It may be the case, for

example, that L1 distance underestimates the extent to which

lower-probability false predictions impact N400 amplitude,

somethingwhich could be tested using a fractional Lk distance

(in fact, fractional Lk norms are generally argued to be pref-

erable for high-dimensional data; see Aggarwal et al., 2001).

Conversely, if it is relatively more difficult to inhibit higher-

probability false predictions than is operationalized by L1

distance, it may be that a Lk distance with k > 1 is a more

suitable way to operationalize this. In the present study, we

test one of each of these: L0.5 and L2 distance. In addition to Lk

distance, we also choose another distancemetric that has had

a large degree of success as a metric of the distance between

two vectors in computational linguistics and psycholinguis-

tics (Chwilla & Kolk, 2005; Dumais et al., 1988; Deerwester

et al., 1990; Ettinger et al., 2016; Landauer et al., 1998;

Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013;
Table 2 e The names of the metrics used in the present study a
based on the version given in the citation, but have been adapte
the true probability (i.e., 0 or 1), wi to the critical word, and wBC

probability in a given context).

Metric Name Equation

Surprisal � logðbpðwiÞÞ
Lk Distance P

iðjbpðwiÞ � pðwiÞjkÞ
c2 Distance P

ið
ðpðwiÞ � pðwiÞÞ2bpðwiÞ

Þ
Hellinger Distance hP

i

� ffiffiffiffiffiffiffiffiffiffiffiffi
pðwiÞ

p �
ffiffiffiffiffiffibpðwp

Cosine Distance
1�

P
ibpðwiÞpðwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ibpðwiÞ2
q ffiffiffiffiffiffiP

i

q
Entropy � P

ibpðwiÞlog bpðwiÞ
Constraint (p) bpðwBCÞ
Constraint (S) � logðbpðwBCÞÞ
Parviz et al., 2011; Van Petten, 2014): cosine distance. As with

other distribution-dependent metrics, if Lk or cosine distance

successfully models the effect of inhibition on N400 ampli-

tude, we should expect a negative correlation between the

two; with a greater distance between the true and predicted

probability distribution resulting a stronger N400 response.

We also compare these metrics (that to the best of our

knowledge have not previously been used to predict N400

amplitude), with both constraint and entropy, also calculated

from GPT-J. For constraint, we record the probability of the

highest-probability continuation in a given context, analogous

to the Best Completion calculated with cloze probabilities. To

account for the possibility of a logarithmic linking function

between constraint and the N400 (as there appears to be for

predictability), we also convert these probabilities into sur-

prisal, and test both metrics.

6.1. Method

6.1.1. Data
For this experiment,we used experimental data fromall stimuli

in the dataset that have criticalwords that are in the vocabulary

of the GPT-J languagemodel (i.e., the data from all single-token

criticalwords). Becausewe include constraint as ametric in our

analysis, we also restrict our analysis to stimuli that are not the

best completions in their context, following Federmeier et al.

(2007)dthat is, we exclude cases where the surprisal variant of

the constraint metric is identical to stimulus surprisal. Our

analysis thus includes data from 17,892 trials (873 stimuli; 138

experimental participants). Note that these exclusion criteria

were decided before the analyses were carried out.

6.1.2. Metrics
All metrics used in this analysis are defined in Table 2. The

correlations between all metrics is shown in Fig. 2.

6.2. Results

First, we compared how well each of the metrics performs

compared to surprisal, probability, and an overall
nd the equations used to calculate them. All equations are
d for consistency. bp refers to the predicted probability, p to
to the best completion (i.e., the word with the highest

Citation

Levy (2008)

1
k

Aggarwal et al. (2001)
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predictability regression that includes both variables. We

compared the AIC of linear mixed-effects models with each

metric as a predictor and with the same covariates and

random effects structure as those in Experiment 1, where, as

in Experiment 1, all variables were z-scored. The results can

be seen in Fig. 3, which shows that the aggregate predict-

ability regression best fits the N400 data, followed by (in

order of increasing AIC, and thus, decreasing fit) surprisal,

Hellinger distance, probability, cosine distance, L2 distance,

constraint operationalized as probability, and c2 distance. On

their own, constraint operationalized as surprisal, entropy,

and L0.5 distance appear to reduce model fit, compared to a

model including just the covariates and random effects

structure.

This result demonstrates that no distribution-dependent

metric is a better predictor of N400 amplitude than a combi-

nation of surprisal and probability, or even surprisal alone.

However, the question we seek to address is whether these

variables can explain any variance in N400 amplitude not
explained by predictability alone. Thus, in the final, critical

step, we test whether adding any of the distribution-

dependent metrics to the predictability regression improves

fit. The results are shown in Fig. 4. As can be seen, the only

metric that improves model fit numerically if added to the

regression is cosine distance; the rest decrease model fit.

However, as discussed in Experiment 1, generally only a dif-

ference in AIC of 4 or more is considered to reflect a sub-

stantial difference in model fit (Burnham & Anderson, 2004),

suggesting that the improvement due to cosine distance is not

meaningful.

In order to test directly and to verify whether there is

indeed a lack of improvement from adding the other metrics,

we run likelihood ratio tests comparing the predictability

regression with regressions also including each distribution-

dependent variable. We find that cosine distance does not

improve model fit [c2(1) ¼ 3.0969, p ¼ .0784], and neither does

c2 distance [c2(1) ¼ 1.8036, p ¼ .1793], entropy [c2(1) ¼ .5557,

p ¼ .4560], L0.5 distance [c2(1) ¼ .4025, p ¼ .5258], Hellinger

https://doi.org/10.1016/j.cortex.2023.08.001
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Fig. 3 e The AICs of all regressions including a single metric of interest as a predictor, as well as one including both

predictability metrics (probability and surprisal).

Fig. 4 e The AICs of all regressions including a single metric of interest as a predictor, as well as one including both

predictability metrics (probability and surprisal).
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distance [c2(1) ¼ .1774, p ¼ .6737], either constraint metric

[probability: c2(1) ¼ .0113, p ¼ .9153; surprisal: c2(1) ¼ .0145,

p ¼ .9042], or L2 distance [c2(1) ¼ .0072, p ¼ .9324]. Thus, no

distribution-dependent metric explains any variance in N400

amplitude above and beyond that explained by predictability.

6.3. Discussion

Our results replicate and extent several findings. First, as in

previous work (Aurnhammer & Frank, 2019; Frank et al., 2015;

Michaelov & Bergen, 2022b; Szewczyk & Federmeier, 2022),

surprisal is the best single predictor of N400 amplitude overall.
Second, like Szewczyk and Federmeier (2022), we find that

including un-transformed probability as a predictor in addi-

tion to surprisal improves fit to the N400 data in this dataset.

However, we extend this finding to also include GPT-J, amodel

that appears calculate probabilities thatmore closely correlate

with N400 amplitude both when used directly and trans-

formed into surprisal (Michaelov & Bergen, 2022b) compared

to GPT-2 (Radford et al., 2019), the model used by Szewczyk

and Federmeier (2022). Finally, as in previous work, neither

constraint (Federmeier, 2007; Federmeier et al., 2002, 2007;

Otten & Berkum, 2008; Van Petten et al., 1999; Vissers et al.,

2006; Wlotko & Federmeier, 2007) nor entropy (Stone et al.,
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2021) predict N400 amplitude above and beyond predictability.

Crucially, our study extends these findings to probabilities

derived from languagemodels in addition to cloze probability.

In this experiment we set out to investigate whether the

preactivation of stimuli other than the actually-occurring

stimuli impact the amplitude of the N400 response using

metrics operationalizing the difference between the true dis-

tribution for each critical word and the distribution predicted

by GPT-J. We found that neither the variables that treat this

difference as a difference between probability distributions (c2

distance andHellinger distance) nor themetrics that treat it as

the distance between two vectors (cosine distance, L0.5 dis-

tance, and L2 distance) explain any variance in N400 ampli-

tude not explained by predictability alone, as operationalized

by probability and surprisal.
7. General discussion

It has long been widely believed (with a few exceptions, e.g.,

Debruille, 2007; Fitz & Chang, 2019; Hoeks et al., 2004) that the

N400 is only sensitive to the preactivation of the stimulus that

it is elicited by, and not the rest of the landscape of activation

elicited by its context. This premise forms the basis of the

majority of contemporary accounts of the effect (e.g., Brouwer

et al., 2012; Brouwer&Hoeks, 2013; Delogu et al., 2019; DeLong

et al., 2014; Federmeier, 2021; Kuperberg et al., 2020; Kuperberg

& Jaeger, 2016; Kutas et al., 2011; Van Petten& Luka, 2012). But,

as discussed in section 1, this never been fully testeddpre-

vious work has looked at constraint (Federmeier, 2007;

Federmeier et al., 2002, 2007; Otten & Berkum, 2008; Van

Petten et al., 1999; Vissers et al., 2006; Wlotko & Federmeier,

2007), or in one more recent study, entropy based on the

words generated by the cloze task (Stone et al., 2022). In both

cases, the approaches only consider a small subset of the full

landscape of preactivation at the time when the stimulus is

encountereddin the case of constraint, only the extent to

which the most predictable word is expected, and in the case

of the cloze-derived entropy study (Stone et al., 2022), the

degree to which at most 8 predictable words are expected.

Thus, prior to the current study, a key link in the derivation

chain was weak. Do metrics that consider the full probability

distribution predict variance in the amplitude of the N400 not

captured by metrics that consider only the probability of the

stimulus itself? Our results suggest that they do notdno

distribution-dependent metric on its own predicts N400

amplitude better than surprisal, and like constraint and en-

tropy, none of the distribution-dependent metrics explain a

significant amount of the variance in N400 amplitude above

and beyond that explained by predictability alone.

7.1. What impacts N400 amplitude?

In our experiments, no distribution-dependent metric signif-

icantly predicts N400 amplitude once predictability has been

accounted for. In addition, no individual distribution-

dependent is a better predictor of N400 amplitude than
surprisal. These results are consistent with the account that

the amplitude of the N400 response is dependent only on the

extent to which the stimulus itself was preactivated.

The present study is the first to directly test whether the

full distribution of preactivation can impact N400 amplitude.

The finding that no distribution-dependent metric better

correlates with N400 amplitude than surprisal (which only

reflects the preactivation of the stimulus itself) suggests that

the extent to which a word is preactivated is still the best

predictor of N400 amplitude; and this is further strengthened

by the fact that no distribution-dependent metric explains

variance not explained by either surprisal or probability. Thus,

the derivation chain is strengthened, and we can more

confidently make inferences directly from N400 effects about

the degree to which the neural representations associated

with given stimuli are activated before they are encountered.

It is therefore possible to investigate exactly which factors

impact and modulate thisdas one example, the line of

research investigating whether the amplitude of the N400

response, and hence, preactivation, is sensitive to the ani-

macy features of entities under discussion (Kim & Osterhout,

2005; Kuperberg, 2007; Kuperberg et al., 2003; Nieuwland et al.,

2013; Nieuwland & Van Berkum, 2005; Paczynski & Kuperberg,

2011, 2012; Szewczyk & Schriefers, 2011, 2013; Vega-Mendoza

et al., 2021; Wang et al., 2020).

7.2. Surprisal and predictive coding

The research carried out in the present study is compatible

with most contemporary accounts of the N400. However, as

noted in section 3, a strong interpretation of the study and

results uses the predictive coding framework, under which

the neurocognitive system responsible for the preactivation

underlying the N400 response is a predictive system

(Bornkessel-Schlesewsky & Schlesewsky, 2019; Kuperberg

et al., 2020; Lewis & Bastiaansen, 2015). As shown in the cur-

rent work, language models can serve as computational-level

cognitive models of at least part of this proposed system. The

results of the present study also provide evidence to support

the predictive coding account of the N400.

Under a predictive coding account, the functional signifi-

cance of neural metrics of processing difficulty is twofold: the

new activation is information that allows the current stimulus

to be correctly processed by the system; and the new activa-

tion is a learning signal (Clark, 2013; Huang & Rao, 2011; Rao &

Ballard, 1999). In the language domain, this learning signal is

thought to allow the neurocognitive system underlying lan-

guage comprehension (and under some accounts also pro-

duction, see, e.g., Fitz & Chang, 2019; Kuperberg et al., 2020) to

learn and adapt, either long-term as part of continual lan-

guage learning, or to a specific situation (Bornkessel-

Schlesewsky & Schlesewsky, 2019; Hodapp & Rabovsky,

2021; Kuperberg et al., 2020).

While all metrics tested in the present study could

conceivably fulfill both of these roles, it is striking that sur-

prisal, the best-performing metric, also seems best suited to

fulfilling the role of learning signal. As discussed, when
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comparing the true and predicted probabilities generated by

language models, surprisal is equivalent to cross-entropy. This

is interesting because cross-entropy is precisely the loss func-

tion used to train virtually all language models (Jurafsky &

Martin, 2023). In other words, if we were to determine what

would be the best loss function for a neurocognitive system

engaging in lexical prediction to use, based on current research,

it would be cross-entropydand thus, surprisal. For this reason,

the fact that surprisal is the metric most correlated with N400

amplitude is striking. In this way, our results provide indirect

evidence to support the predictive coding account of the N400.

7.3. Mechanistic implications

Predictability alone explaining variance in N400 amplitude is

consistent with two specific mechanistic accounts of how the

preactivation that occurs as part of online language compre-

hension is indexed by the N400 response.

The first is that the processing difficulty indexed by theN400

is only due to the activation of the neural representations

associated with the stimulus that were not already activated

due to the preceding context. That is, the amplitude of the N400

response is not just stimulus-dependent, but also only reflects

this stimulus-driven activation. This is in line with most

contemporary accounts of theN400 (DeLonget al., 2014; DeLong

& Kutas, 2020; Federmeier, 2021; Kuperberg et al., 2020;

Kuperberg& Jaeger, 2016; Kutas et al., 2011; Kutas& Federmeier,

2011; Van Petten & Luka, 2012). So what happens to words that

are preactivatedbutnot encountered?Onepossibility is that the

metabolic resources required for preactivation (see, e.g.,

Brothers & Kuperberg, 2021; Levy, 2008) are constantly required

to be expended to maintain preactivation, and thus, simply

stopping doing so is enough to suppress them. Alternatively,

theremaynot beanyactive suppressionor inhibition at alldthe

evidence suggests that highly probable words that are not pre-

sented as stimuli can remain activated over the course of an

experiment (Rommers & Federmeier, 2018).

The other mechanistic account consistent with the results

is that inhibition does indeed contribute to the processing

difficulty indexed by the N400 response, but that the effort

required to do this is dependent on the extent to which the

stimulus was preactivated. Under such an account, it is simply

the case that surprisal, or another metric that is only depen-

dent on thepreactivation state of the stimulus,mathematically

expresses the combined processing difficulty of activating the

representations associated with the stimulus and inhibiting

others. Indeed, given the number of metrics of the difference

between the true and predicted probability distributions that

simplify to a stimulus-dependent metricdKullback-Leibler

divergence, R�enyi divergence (a generalization of Kullback-

Leibler divergence), Bhattacharyya distance, total variation

distance, and L1 distancedperhaps it would not be surprising if

this were the case. This idea is in line with the account of Hale

(2001), who envisions surprisal as reflecting the difficulty of

disconfirming predictions, and perhaps implicitly in line with

the account of Fitz and Chang (2019), who argue that N400

amplitude reflects the activation and inhibition effort and
present L1 distance as themetric to express thisdwhich, as we

show, is a stimulus-dependent metric. If this is the case,

however, it does not diminish the importance of determining

whether the amplitude of the N400 response is sensitive to the

preactivation of the stimulus only or the to the whole distri-

bution (i.e., the whole landscape of activation in long-term

memory). The weak link in the derivation chain has still been

strengtheneddwe can be more comfortable in using the N400

to understand exactly how much a given stimulus was pre-

activated under one experimental condition relative to

anotherdbut further work would need to be carried out to

investigate exactly to what extent the activation and inhibition

contribute to the final amplitude measured.
8. Conclusions

In this study, we used computational methods to investigate

the question of whether the amplitude of theN400 response to

a word is impacted only by the degree to which the word was

preactivated or to the entire landscape of activation elicited by

the preceding context. We found that across the data from the

five experiments modeled, surprisal was the best single pre-

dictor of N400 amplitude. Furthermore, no metrics reflecting

the extent to which words other than the stimulus were pre-

activated explained any variance in N400 amplitude beyond

that explained by surprisal and probability. This result sup-

ports the idea that N400 amplitude is only sensitive to the

degree to which the stimulus itself was preactivated at the

point at which it was encountered. Based on this and another

property of surprisaldits equivalence with cross-entropy for

language model predictionsdwe argue that the results of the

present study support a predictive coding account of the N400.
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Appendix A. The stimulus-dependence of L1

distance

In this appendix, we show that the L1 distance between the

true and predicted probability distributions for a givenwordwi

is only dependent on the probability of the word p(wi) and not

the probabilities of other words.

First, we note that the sum of the absolute error for each

word is the sum of the absolute error E for the true next word

wi and the absolute error for all the words that are not the true

next word (i.e., every w:i):

L1 ¼ EðwiÞ þ
X

Eðw:iÞ (A.1)

For the true next word, the absolute error is a positive

prediction error, the difference between 1 and the predicted

probability of the word ptrue:

EðwiÞ ¼ 1� pðwiÞ (A.2)

For all other words, the absolute error is a negative pre-

diction error, the predicted probability of the false word p(w:i)

minus the true probability, 0:

Eðw:iÞ ¼ pðw:iÞ � 0 (A.3)

This simplifies to:

Eðw:iÞ ¼ pðw:iÞ (A.4)

Since the distribution is a probability distribution, all

probabilities add up to 1, and thus:

pðwiÞ þ
X

pðw:iÞ ¼ 1 (A.5)

This means that the following is also the case:

X
pðw:iÞ ¼ 1� pðwiÞ (A.6)
We can substitute Equation (A.2) and Equation (A.6) into

the equation for total Manhattan distance Equation (A.1),

getting:

L1 ¼ ð1�pðwiÞÞ þ ð1� pðwiÞÞ (A.7)

Which can be simplified to:

L1 ¼ 2� 2pðwiÞ (A.8)
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