
Table 1:  
Predictor + Cloze Surprisal

Predictor df p

GRNN 23.103 1 <0.001
JRNN 16.056 1 0.001
Tranformer-XL 13.277 1 0.002
GPT-2 8.178 1 0.025
GPT-3 0.754 1 1

BERT 8.282 1 0.025
RoBERTa 3.276 1 0.351

ALBERT 1.935 1 0.757

Table 2:  
Cloze Surprisal + Predictor

Predictor df p

GRNN 0.056 1 1

JRNN 3.982 1 0.24

Tranformer-XL 3.031 1 0.392

GPT-2 5.088 1 0.131

GPT-3 12.168 1 0.004
BERT 9.639 1 0.013
RoBERTa 11.72 1 0.005
ALBERT 8.45 1 0.024

Introduction
Language comprehension involves preactivation of expected words (Kutas,
DeLong, and Smith 2011; Van Petten and Luka 2012; Kuperberg, Brothers,
and Wlotko 2020).
Expectancy is virtually always operationalized as cloze (Taylor 1953), but:

Cloze is an opaque metric: we don’t know how it relates to the
preactivation involved in comprehension.
Language statistics (operationalized by language model surprisal) can also
predict N400 amplitude (Frank et al. 2015; Aurnhammer and Frank 2019;
Merkx and Frank 2021).
Language model surprisal can model the effect of word expectancy on
N400 amplitude even when cloze cannot (Michaelov and Bergen 2020).
Statistical learning underlies predictive processing in other domains (de
Lange, Heilbron, and Kok 2018).

Can state-of-the-art language models predict the N400 better than cloze?
Past research: cloze out-performs language models in predicting
processing difficulty (Smith and Levy 2011; Brothers and Kuperberg
2021; Szewczyk and Federmeier 2022).
Now: language models continue to advance at a rapid pace, and higher-
quality models are better at predicting the N400 (Aurnhammer and Frank
2019)—if language statistics underlie preactivation, a sufficiently high-
quality model should capture this.

Methods
Stimuli from Nieuwland et al. (2018) were truncated until the target noun,
which was either more or less contextually predictable.
These stimuli were run through 8 neural network language models:

Two LSTM recurrent neural network language models (Gulordava et al.
2018; Jozefowicz et al. 2016).
Three autoregressive transformer language models (Dai et al. 2019;
Radford et al. 2019; Brown et al. 2020)
Three masked language model transformers (Devlin et al. 2019; Liu et
al. 2019; Lan et al. 2020)

Contextual probability  calculated by each model for each
target word in the vocabulary was recorded and transformed into surprisal:

Analyses were run comparing how well cloze (raw probability and surprisal)
and language model surprisal fit the single-trial N400 amplitudes (mean over
200-500ms range) from (Nieuwland et al. 2018).
We further investigated how much variance in N400 amplitude is explained
by cloze vs. language models.

 

Results
How good is each metric at predicting single-trial N400
amplitude?

Assessed by comparing the AICs of regressions including each predictor as
a main effect:

Figure 1: Relative AIC of regressions including each predictor. The cloze probability regression was
used as the baseline, so regressions with AIC values below zero have an improved fit relative to cloze

probability.

What is the variance in N400 amplitude explained by language
model surprisal and cloze?

Assessed by investigating whether adding cloze surprisal to a regression
already including language model surprisal significantly improves model fit
(Table 1), and vice-versa (Table 2):

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary of Results
The surprisals calculated from the predictions of four language models—
GPT-3, BERT, RoBERTa, and ALBERT—fit single-trial N400 amplitude
better than cloze probability or surprisal (Figure 1).
GPT-3, BERT, RoBERTa, and ALBERT surprisal explains variance in N400
amplitude not explained by cloze surprisal (Table 2).
Cloze surprisal does not explain variance in the N400 above and beyond that
explained by GPT-3, RoBERTa, and ALBERT surprisal (Table 1).

Conclusions
The surprisals calculated from three of the highest-quality language models
predict N400 amplitude better than cloze on all fronts, making them the best
predictors of N400 amplitude to date (based on this study).
Provides evidence for the idea that the statistics of language drives the
preactivation underlying the N400 response.
Suggests that researchers should use high-quality language models for
norming when designing stimuli.
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