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Abstract

Context changes expectations about upcoming words—
following a story involving an anthropomorphic peanut, com-
prehenders expect the sentence the peanut was in love more
than the peanut was salted, as indexed by N400 amplitude
(Nieuwland & van Berkum, 2006). This updating of expecta-
tions has been explained using Situation Models—mental rep-
resentations of a described event. However, recent work show-
ing that N400 amplitude is predictable from distributional in-
formation alone raises the question whether situation models
are necessary for these contextual effects. We model the re-
sults of Nieuwland and van Berkum (2006) using six compu-
tational language models and three sets of word vectors, none
of which have explicit situation models or semantic ground-
ing. We find that a subset of these can fully model the effect
found by Nieuwland and van Berkum (2006). Thus, at least
some processing effects normally explained through situation
models may not in fact require explicit situation models.
Keywords: psycholinguistics; human language comprehen-
sion; event-related brain potentials; N400; natural language
processing; deep learning; language models; word vectors

Introduction
It is widely believed that prediction plays a key role in lan-
guage processing, with more predictable words being pro-
cessed more easily (Fischler & Bloom, 1979; Kutas & Hill-
yard, 1984; Levy, 2008; Kutas, DeLong, & Smith, 2011;
Van Petten & Luka, 2012; DeLong, Troyer, & Kutas, 2014;
Luke & Christianson, 2016; Kuperberg, Brothers, & Wlotko,
2020). Perhaps the strongest evidence for this comes from the
N400, a neural signal of processing difficulty that is highly
correlated with lexical probability—contextually probable
words elicit an N400 response of smaller (less negative) am-
plitude than contextually improbable words, whether pre-
dictability is determined based on human judgements (Kutas
& Hillyard, 1984; for review see Van Petten & Luka, 2012)
or a corpus (Parviz, Johnson, Johnson, & Brock, 2011; Frank,
Otten, Galli, & Vigliocco, 2015; Aurnhammer & Frank,
2019b; Merkx & Frank, 2021; Szewczyk & Federmeier,
2022; Michaelov, Coulson, & Bergen, 2022; Michaelov, Bar-
dolph, Van Petten, Bergen, & Coulson, 2023).

A striking feature of the predictions indexed by the N400
is how flexible they can be. Under normal circumstances, a
sentence such as the peanut was in love would be highly im-
probable, much more so than the peanut was salted. Follow-
ing the short story in (1), however, this changes (Nieuwland
& van Berkum, 2006).

(1) A woman saw a dancing peanut who had a big smile on
his face. The peanut was singing about a girl he had just
met. And judging from the song, the peanut was totally
crazy about her. The woman thought it was really cute to
see the peanut singing and dancing like that.

In fact, Nieuwland and van Berkum (2006), who tested this
in Dutch, found that in the context of (1), the last word of
de pinda was verliefd (‘the peanut was in love’) elicited a
smaller N400 than de pinda was gezouten (‘the peanut was
salted’). How does such a dramatic reversal occur?

One possibility put forward by Nieuwland and van Berkum
(2006) is that while reading the context, the reader’s mental
representation of the peanut is altered such that it is treated
as an animate entity. This, as Nieuwland and van Berkum
(2006) note, is in line with theories of situation models, which
argue that we track the entities under discussion, as well
as their properties and relations. Such accounts generally
involve explicit structures or schemata, grounding in world
knowledge or experience, extraction of propositional infor-
mation, or a combination of these (see, e.g., Bransford, Bar-
clay, & Franks, 1972; Kintsch & van Dijk, 1978; Johnson-
Laird, 1980; Garnham, 1981; Johnson-Laird, 1983; van
Dijk & Kintsch, 1983; Kintsch, 1988; Zwaan, Langston,
& Graesser, 1995; Zwaan, Magliano, & Graesser, 1995;
Radvansky, Zwaan, Federico, & Franklin, 1998; Kintsch,
1998; Zwaan & Radvansky, 1998; Zwaan & Madden, 2004;
Kintsch, 2005; Van Berkum, Koornneef, Otten, & Nieuw-
land, 2007; Kintsch & Mangalath, 2011; Butcher & Kintsch,
2012; Zwaan, 2014, 2016; Zacks & Ferstl, 2016; Kintsch,
2018; Hoeben Mannaert & Dijkstra, 2021). On a situation
model account, the reader alters their semantic representation
of the peanut to give it animate features in accordance with
the information that it can sing, dance, and show emotions,
thereby facilitating the processing of in love.

The hypothesis that structured or grounded situation mod-
els explain N400 effects such as those found by Nieuwland
and van Berkum (2006) is generally accepted (e.g., Hagoort
& van Berkum, 2007; Filik & Leuthold, 2008; Warren,
McConnell, & Rayner, 2008; Rosenbach, 2008; Ferguson
& Sanford, 2008; Ferguson, Sanford, & Leuthold, 2008;
Menenti, Petersson, Scheeringa, & Hagoort, 2009; Bicknell,
Elman, Hare, McRae, & Kutas, 2010; de Groot, 2011; Me-
tusalem et al., 2012; Aravena et al., 2014; Zwaan, 2014; Xi-



ang & Kuperberg, 2015; Kuperberg et al., 2020) and has been
shown to be viable using computational models (Venhuizen,
Crocker, & Brouwer, 2019). However, there are alternative
explanations.

The present study asks whether the effect can instead be
explained by lexical preactivation based on distributional lin-
guistic knowledge, following the findings that the statistics of
language can be used to model N400 effects (Ettinger, Feld-
man, Resnik, & Phillips, 2016; Michaelov & Bergen, 2020;
Michaelov, Bardolph, Coulson, & Bergen, 2021; Michaelov
& Bergen, 2022a; Uchida, Lair, Ishiguro, & Dominey, 2021;
Michaelov et al., 2023) and predict single-trial N400 ampli-
tude (Chwilla & Kolk, 2005; Parviz et al., 2011; Van Pet-
ten, 2014; Frank et al., 2015; Aurnhammer & Frank, 2019a,
2019b; Merkx & Frank, 2021; Michaelov et al., 2021;
Szewczyk & Federmeier, 2022; Michaelov et al., 2023).

Specifically, we look at two possible ways in which this
might arise. One, which we refer to as event-level priming,
refers to the idea that a word associated with a previously-
discussed event may be more likely to be predicted by virtue
of this. This is something that has been previously reported
in the N400—Metusalem et al. (2012), for example, found
that that merely being related to the event under discussion
leads to a smaller N400 response to a word even when that
word is inappropriate. Michaelov and Bergen (2022a) model
this with transformer language models—systems trained to
calculate the probability of a word given its context based on
the statistics of language alone—showing that this effect is
explainable with distributional information. Thus, it may be
the case that the fact that in love is related to, for example,
being crazy about someone that leads to it being predicted to
be more likely than salted. Following Michaelov and Bergen
(2022a), we investigate this using 6 Dutch transformer lan-
guage models (Havinga, 2021, 2022a, 2022b, 2022c; de Vries
et al., 2019; Delobelle, Winters, & Berendt, 2020), test-
ing whether they show the same effect as humans—that is,
whether they predict the canonical sentence the peanut was
salted to be less likely than the noncanonical sentence the
peanut was in love.

An alternative possibility is lexical priming. More simply
than in the case of event-level priming, it may be the case
that the preceding context involving words such as dancing,
smile, singing, crazy, and cute exerts a stronger pressure on
prediction of in love than peanut does on salted. Intuitively,
one might expect that a system (neurocognitive or computa-
tional) displaying event-level priming is likely to display lexi-
cal priming—indeed, lexical priming is a possible mechanism
by which at least some part of event-level priming could be
achieved. The fact that lexical priming is likely to occur in
a system displaying event-level priming is also supported by
the fact that language models show both (Kassner & Schütze,
2020; Misra, Ettinger, & Rayz, 2020; Michaelov & Bergen,
2022a). Thus, in the present study, we distinguish between
two possible explanations of the effect found by Nieuwland
and van Berkum (2006): lexical priming alone, and event-

level priming that may include lexical priming.
As discussed, language models can be used to model the

latter. To model the former, we turn to word vectors—
representations of words derived from their co-occurrence
statistics, either directly or based on word embeddings
learned by neural networks (see, e.g., Dumais, Furnas, Lan-
dauer, Deerwester, & Harshman, 1988; Landauer, Foltz,
& Laham, 1998; Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013; Pennington, Socher, & Manning, 2014; Mikolov,
Grave, Bojanowski, Puhrsch, & Joulin, 2018; Tulkens, Em-
mery, & Daelemans, 2016; Grave, Bojanowski, Gupta,
Joulin, & Mikolov, 2018). The cosine distance between the
vector of each critical word (e.g. in love or salted) and the
mean of the vectors of the words in the preceding context can
therefore be used to test how similar the critical word is to the
words preceding it (Ettinger et al., 2016; Uchida et al., 2021),
and thereby model the effects of lexical priming alone. To
do this this we used three sets of Dutch word vectors (from
Tulkens et al., 2016; and Grave et al., 2018).

Background
A number of researchers have attempted to model the N400
computationally, including using language models (Parviz
et al., 2011; Frank et al., 2015; Aurnhammer & Frank,
2019b; Michaelov & Bergen, 2020; Merkx & Frank, 2021;
Michaelov et al., 2021, 2022; Szewczyk & Federmeier, 2022;
Michaelov et al., 2023) and the distances between vector rep-
resentations of words (Parviz et al., 2011; Van Petten, 2014;
Ettinger et al., 2016; Uchida et al., 2021; Michaelov et al.,
2023). There have also been several attempts to computa-
tionally model whether the amplitude of the N400 response
is impacted by situation models (Uchida et al., 2021; Ven-
huizen et al., 2019) and thematic roles (Brouwer, Crocker,
Venhuizen, & Hoeks, 2017; Fitz & Chang, 2019; Rabovsky,
Hansen, & McClelland, 2018).

To our knowledge, only one previous study (Uchida et al.,
2021) has directly attempted to model the discourse effect
found by Nieuwland and van Berkum (2006), and it does not
rely on purely distributional linguistic information. Uchida et
al. (2021) base their model on Wikipedia2Vec (Yamada et al.,
2020) vectors—while these include distributional informa-
tion derived from the surface-level statistics of language, they
also include information about hyperlinks between Wikipedia
pages, and thus structured semantic relations based on hu-
man judgements of relevance and importance (Yamada et al.,
2020). Additionally, Uchida et al. (2021) only look at the
English-translated version of the single stimulus item pre-
sented in (1), and thus, it is unclear whether the results gener-
alize to all the stimuli in the original study. The current study
overcomes these inferential limitations by using the original
Dutch stimuli and by using neural language models and word
vectors trained only on natural language input.

The present study
We investigate the adequacy of distributional knowledge to
explain the human N400 effect found by Nieuwland and van



Berkum (2006) using predictions of neural network language
models and the distance between the word vectors of the criti-
cal words and their context. Specifically, we ask this question
for two possible variants of the effect found by Nieuwland
and van Berkum (2006).

Nieuwland and van Berkum (2006) presented experimen-
tal participants with short stories such as those in (1) includ-
ing “canonical” sentences like the peanut was salted or “non-
canonical” ones like the peanut was in love. One approach
to whether language models and humans show the same pre-
diction patterns (taken by Uchida et al., 2021) is to compare
the statistical metrics the critical words elicit in the context of
the full story versus in isolation. Without preceding context,
these sentences should produce values that match the canon-
icality of the sentence, but the difference should attenuate or
reverse following the story context.

Thus, we ran a statistical analysis testing for an interac-
tion between stimulus length (full story or only the last sen-
tence) and canonicality (canonical or noncanonical). Such
an interaction would reveal a context-dependent difference in
the effect of canonicality on our statistical metrics; and thus
would replicate in neural language models the effect found by
Nieuwland and van Berkum (2006).

However, an interaction between stimulus length and
canonicality in this direction could result from either a rever-
sal or a decrease in the magnitude of the canonicality effect.
Canonical stimuli might elicit lower surprisals or smaller co-
sine distances in both context conditions, but of different
magnitudes. For this reason, we label the effect measured by
an interaction (in the expected direction) a reduction effect.

Nieuwland and van Berkum (2006) did not employ the 2
x 2 design that would allow them to detect an interaction—
they compared the N400 in context only, finding that canon-
ical stimuli actually elicited larger N400 responses than non-
canonical stimuli. To replicate this finding, we test whether
the canonical full-length stimuli elicit higher surprisals or
greater cosine distances than the noncanonical full-length
stimuli, a reversal effect.

If either language models or word vectors can successfully
model the reversal effect, this would suggest that distribu-
tional information is sufficient to explain the data reported
by Nieuwland and van Berkum (2006). Thus, while situation
models and extralinguistic information may be involved in the
neurocognitive system underlying the N400, additional evi-
dence is required to prove this. If neither can model either ef-
fect, this would undermine the claim that distributional infor-
mation is sufficient to explain the effect found by Nieuwland
and van Berkum (2006). Finally, if either language models or
word vectors can successfully model the reduction effect but
not the full reversal effect, this may support the idea that dis-
tributional information could be used as part of the neurocog-
nitive system underlying the N400 response, but that it is not
sufficient to yield the dynamic contextual sensitivity humans
display. Situation models and other sources of information
might explain the remainder.

Method
Materials
Stimuli were used from the original experiment, and are pro-
vided online1 by the authors (Nieuwland & van Berkum,
2006). We compared the effect of experimental condition on
the N400 and on neural network surprisal (as in Michaelov
& Bergen, 2020) and the cosine similarity between the word
vector of the critical word and the mean of the word vectors
in its context (as in Ettinger et al., 2016).

The stimuli use 60 full-length story frames, each of which
has either a canonical or noncanonical predicate, for 120
unique stories. As the aim is to model human online compre-
hension processes, the models only used the text before the
critical words (e.g., in love or salted) to predict the critical
words, so stories were truncated after the critical word. For
the critical sentence stimuli, we isolated the last sentence of
these truncated stories, including and up to the critical word
in each story (e.g., The peanut was in love). This produced
240 stimuli, as shown in Table 1.

Predicate Type Stimulus Length Count
Canonical Full-length 60
Canonical critical sentence 60
Noncanonical Full-length 60
Noncanonical critical sentence 60

Table 1: Experimental stimuli derived from Nieuwland and
van Berkum (2006).

Statistical Analysis
Statistical analysis and data manipulation were carried out in
R (R Core Team, 2020) using Rstudio (RStudio Team, 2020)
and the tidyverse (Wickham et al., 2019) and lme4 (Bates,
Mächler, Bolker, & Walker, 2015) packages. Code, data, and
statistical analyses are provided at https://osf.io/wnj76.

Experiment 1: Language Models
Language models
We used six pretrained models available through the trans-
formers package (Wolf et al., 2020). These were all of the
available monolingual Dutch language models using standard
architectures and training procedures at the time of analy-
sis. Four of these models—Dutch versions of the medium
(Havinga, 2021) and large (Havinga, 2022a) GPT-2 mod-
els (Radford et al., 2019) and Dutch versions of the 125
million parameter (Havinga, 2022b) and 1.3 billion param-
eter (Havinga, 2022c) GPT-Neo models (Black, Gao, Wang,
Leahy, & Biderman, 2021)—were autoregressive, meaning
that they are trained to predict a word based only on its pre-
ceding context. The remaining two models—BERTje (de
Vries et al., 2019) and RobBERT v2 (Delobelle et al., 2020),

1https://www.researchgate.net/publication/
268208198
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based on BERT (Devlin, Chang, Lee, & Toutanova, 2019) and
RoBERTa (Liu et al., 2019), respectively—are masked lan-
guage models, meaning that they are also trained to predict
a word based on the text following the critical word. How-
ever, as stated, in the present study, all models were only
provided with the context preceding the critical words. We
ran the stimuli through each language model, calculating the
surprisal of each critical word that was in the model’s vocab-
ulary (we restricted our analyses to these items). To do this,
we calculated the negative of the logarithm of the probabili-
ties provided for each critical word by each of the language
models. We then tested for the reduction and reversal effects
with these surprisal values. The language models were run
in Python (Van Rossum & Drake, 2009), using the PyTorch
(Paszke et al., 2019) implementation of each model, as pro-
vided by the transformers package (Wolf et al., 2020).

Reduction effect
In order to test the reduction effect, we constructed linear
mixed-effects regression models, with the surprisal calculated
from each language model as the dependent variable. In each
model, predicate type (canonical or noncanonical) and stimu-
lus length (full-length or critical sentence) were fixed effects
and story frame (each of the 60) was a random intercept. For
the regressions with the autoregressive models and BERTje
surprisal as their dependent variables, we then constructed
regressions also including an interaction between predicate
type and stimulus length. Using likelihood ratio tests, we
found that these regressions including the interaction fit the
data significantly better than those without the interaction
(GPT-2 Medium: χ2(1) = 112.0, p < 0.001; GPT-2 Large:
χ2(1)= 115.9, p< 0.001; GPT-Neo 125M: χ2(1)= 67.3, p<
0.001; GPT-Neo 1.3B: χ2(1) = 56.3, p < 0.001; BERTje:
χ2(1) = 44.4, p < 0.001), indicating a significant interaction
between predicate type and stimulus length. The regression
with RobBERT surprisal as its dependent variable and no in-
teraction had a singular fit, but the regression with the inter-
action did not. Thus, instead of running a likelihood ratio
test to investigate whether there was a significant interaction,
we used a a Type III ANOVA with Satterthwaite’s method
for estimating degrees of freedom (Kuznetsova, Brockhoff,
& Christensen, 2017) on the regression with the interaction,
finding it to be a significant predictor of RobBERT surprisal
(F(1,71.2) = 81.1, p < 0.001). Note that all reported p-
values are corrected for multiple comparisons based on false
discovery rate (Benjamini & Yekutieli, 2001).

For all language models, there was a significant interac-
tion between predicate type and stimulus length. Further in-
spection of the regressions showed that in all cases, the in-
teraction was in the expected direction. Thus, all models
displayed the reduction effect. This can be seen visually in
Figure 1—in all models, when only the critical sentence was
presented, the mean surprisal for critical words in canonical
sentences is lower than for critical words in noncanonical sen-
tences. Conversely, when the full-length story is presented to
the language models, the critical words in the noncanonical

sentences elicit a lower or roughly-equal surprisal than the
critical words in the canonical sentences.

Reversal effect
To test for which models this latter finding was statistically
significant, we initially attempted to fit linear mixed-effects
regression models for each the full-length and critical sen-
tence stimulus results for each language model; however, this
led to several models with singular fits. Instead, we car-
ried out pairwise two-tailed t-tests, comparing the surprisal of
canonical and noncanonical stimuli for full-length and critical
sentence stimuli for each language model.

First, we test whether the decontextualized canonical crit-
ical sentence stimuli elicit significantly lower surprisals than
noncanonical critical sentence stimuli. After correction for
multiple comparisons, they do so in all language models
(GPT-2 Medium: t(88.7) =−9.91, p < 0.001; GPT-2 Large:
t(88.1) = −10.1, p < 0.001; GPT-Neo 125M: t(88.6) =
−10.3, p < 0.001 ; GPT-Neo 1.3B: t(85.5) = −9.62, p <
0.001; BERTje: t(48.4) = −5.99, p < 0.001; RobBERT:
t(55.1) =−7.67, p < 0.001).

Next, in order to investigate the reversal effect, we test
whether canonical full-length stimuli elicit lower surprisals
than noncanonical full-length stimuli. After correction for
multiple comparisons, only the Dutch GPT-2 models suc-
cessfully model the reversal effect—they are the only mod-
els for which canonical full-length stimuli elicit signifi-
cantly higher surprisals than noncanonical full-length stimuli
(GPT-2 Medium: t(86.3) = 6.11, p < 0.001; GPT-2 Large:
t(88.4) = 5.65, p < 0.001).

The difference in other models was not significant af-
ter correction for multiple comparisons (GPT-Neo 125M:
t(88.9) =−0.77, p = 1.000 ; GPT-Neo 1.3B: t(88.9) = 0.47,
p = 1.000; BERTje: t(51.5) = 0.79, p = 1.000; RobBERT:
t(46.6) = 2.32, p = 0.120).

However, it is worth noting that the contrast between the
two sets of results (critical sentence only vs. full stimulus)
means that significant canonicality effects for the critical sen-
tence stimuli disappear in the full-length stimuli, underscor-
ing the presence of a reduction effect in the Dutch GPT-Neo
models, BERTje, and RobBERT.

Discussion
Nieuwland and van Berkum (2006) found that in a suitably
supportive context, noncanonical stimuli like de pinda was
verliefd (‘the peanut was in love’) elicit smaller N400 re-
sponses than canonical stimuli such as de pinda was gezouten
(‘the peanut was salted’)—context not only mitigated but re-
versed the effect of animacy violation.

We find that two language models also display this rever-
sal effect: Dutch GPT-2 Medium (Havinga, 2021) and Dutch
GPT-2 Large (Havinga, 2022a). When these models are pre-
sented with the same contexts, the surprisal of critical words
in the noncanonical condition is lower than that elicited by
those in the canonical condition.
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Figure 1: Surprisal elicited by critical words for each predicate type and stimulus length.

This is not the case for the remaining four language mod-
els: Dutch GPT-Neo 125M (Havinga, 2022b), Dutch GPT-
Neo 1.3B (Havinga, 2022c), BERTje (de Vries et al., 2019),
and RobBERT (Delobelle et al., 2020). However, these mod-
els do display the weaker reduction effect, and further, the ab-
sence of a significant difference between conditions for these
models when presented with the full stories shows that the
difference between canonical and noncanonical critical sen-
tence stimuli is not just reduced, but disappears entirely.

It may be tempting to infer that the architecture of au-
toregressive transformers, and in particular, those based on
the GPT-2 architecture, leads to success capturing the effect.
However, it should be noted that before correction for mul-
tiple comparisons, RobBERT also successfully displays the
reversal effect. In addition, not all language models had the
same vocabulary, and thus, a different number of items were
analyzed across models2. For these reasons, and because
these models are all of various sizes and trained on several
different datasets, we believe it would be premature to draw
conclusions about how language model architecture impacts
whether a model displays the reversal effect.

Experiment 2: Word Vectors
Cosine Distance
In this study, we used 3 sets of pretrained word vectors:
the 300-dimensional Dutch fastText vectors (Grave et al.,
2018) trained on Dutch text from Wikipedia3 and Common

2Though it should be noted that an alternate analysis including all
critical words by operationalizing the suprisal of multi-token words
as the sum of their tokens’ surprisals (see Michaelov & Bergen,
2022b) shows the same qualitative results for all models except for
BERTje—which performs worse.

3https://nl.wikipedia.org/

Crawl4 and two 320-dimensional Dutch word vectors re-
leased by Tulkens et al. (2016)—one trained on COW (COr-
pora from the Web; Schäfer & Bildhauer, 2012) and one
trained on a Combined corpus made up of the SoNaR cor-
pus (Oostdijk, Reynaert, Hoste, & Schuurman, 2013) and text
from Wikipedia and Roularta5. Cosine distance was calcu-
lated (using SciPy; Virtanen et al., 2020) between the mean
of the word vectors for all words in the preceding context and
the word embedding for the critical word. All critical words
were present in the vectors, so all experimental items were
included in the analysis; it should be noted though that words
in the context that were not present in the vectors were ig-
nored when calculating cosine distance. The cosine distances
for critical words in each condition are shown in Figure 2.

Reduction effect
As with language model surprisal, we constructed linear
mixed-effects regressions with predicate type and stimulus
length as fixed effects and story from as a random inter-
cept. With these models, the cosine distance calculated us-
ing each set of word vectors was the dependent variable.
The interaction between predicate type and stimulus length
was significant for all vectors after correcting for multiple
comparisons (fastText: χ2(1) = 12.0, p = 0.003; Combined:
χ2(1) = 40.8, p < 0.001; COW: χ2(1) = 66.4, p < 0.001).

Reversal effect
When comparing the cosine distances calculated between the
embedding of the critical words and the preceding words
of the critical sentence using two-tailed t-tests as with sur-
prisal, there was a significant difference between canonical

4https://commoncrawl.org/
5https://www.roularta.be
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https://www.roularta.be


FastText Combined COW

Target Sentence Full Story Target Sentence Full Story Target Sentence Full Story

0.0

0.2

0.4

0.6

0.8

Stimulus Length

C
os

in
eD

is
ta

nc
e

Predicate Type

Canonical

Uncanonical

Figure 2: Cosine distance elicited by critical words for each predicate type and stimulus length.

and noncanonical critical words for Combined and COW
vectors (Combined: t(116.9) = −3.48, p = 0.004; COW:
t(116.5) =−4.45, p < 0.001), but not fastText vectors (fast-
Text: t(118.0) =−1.96, p = 0.237).

Similarly, when comparing the cosine distances between
the critical word and the preceding words of the full
story, there was a significant difference between canonical
and noncanonical critical words for Combined and COW
vectors (Combined: t(117.0) = 4.82, p < 0.001; COW:
t(117.0) = 6.78, p < 0.001), but not fastText vectors (fast-
Text: t(117.4) = 1.68, p = 0.418).

Discussion
The cosine distances calculated from all three sets of word
vectors displayed the reduction effect, and two out of three
displayed the reversal effect. Thus, the results suggest that the
N400 effect reported by Nieuwland and van Berkum (2006)
can be explained by lexical priming based on distributional
linguistic knowledge alone.

The present study corroborates the finding of Uchida et al.
(2021), and expands upon it in several ways. First, we explic-
itly tested for the reversal effect—not just whether canonical
and noncanonical stimuli differ depending on whether there
is a preceding story or not, but also whether the noncanonical
sentence is more expected than the canonical when the story
is present. Second, we found that word vector cosine distance
can model the effect for multiple stimuli, not just the peanut
was in love example. Third, we found that the effect can be
modeled in Dutch, the language in which the human study
was carried out. And finally, we found that vectors derived
from text data only (i.e., without additional information) are
able to model the effect.

General Discussion
Human comprehenders use context to update expectations
about upcoming words, making a sentence that would be
highly unlikely on its own more predictable than a sentence
that would be relatively likely on its own. More strikingly,
humans do this even when the event described is implausible,
violating the constraint, for instance, that only animate, con-

scious entities can fall in love. The human comprehension
system is quite flexible if it can update expectations about
what peanuts, for example, can do, based only a story that
indirectly implies the animacy of a fictional peanut.

It has often been assumed that this flexibility requires sit-
uation models that are explicitly structured (Venhuizen et al.,
2019) or involve non-linguistic world knowledge (Uchida et
al., 2021). However, the present findings show that it is pos-
sible for purely linguistic language models model with no di-
rect experiential grounding to update their expectations based
on the linguistic context and knowledge of the statistics of
language. Thus, the dynamics of event-level priming based
on the distributional statistics of language may in some im-
plicit, unspecified way approximate the effects on language
comprehension previously ascribed to situation models.

In fact, the results of the present study provide evidence for
an even simpler explanation. Within final sentences alone,
canonical critical words were more similar to their contexts
than noncanonical words, but when we include the full story
context, it is the noncanonical critical words that are more
similar to their contexts. It is already well-established that
the amplitude of the N400 to a given word is reduced when
it is semantically related to a previously-seen word (Bentin,
McCarthy, & Wood, 1985; Rugg, 1985; Van Petten & Kutas,
1988; Kutas & Hillyard, 1989; Holcomb, 1988; Kutas, 1993;
Lau, Holcomb, & Kuperberg, 2013). Overall, then, our re-
sults show that in principle, it is possible that the pattern in
the N400 responses reported by Nieuwland and van Berkum
(2006) may not rely on situation models or even event-level
priming, but rather reflect some form of lexical priming.

It may still be the case that humans use structured or
semantically-rich situation models in online language com-
prehension (see, e.g., Kuperberg et al., 2020). However, the
results of the study carried out by Nieuwland and van Berkum
(2006) appear to provide weaker evidence for this than previ-
ously believed. Language model predictions or even lexical
priming based on language statistics appear to be sufficient to
explain the effect, at least qualitatively—a valuable line of fu-
ture research would be to test whether these can fully account
for the effect in single-trial N400 data.
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