
Cognitive Science 47 (2023) e13309
© 2023 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science
Society (CSS).
ISSN: 1551-6709 online
DOI: 10.1111/cogs.13309

Do Large Language Models Know What Humans
Know?

Sean Trott,* Cameron Jones,* Tyler Chang, James Michaelov,
Benjamin Bergen

Department of Cognitive Science, University of California San Diego

Received 6 January 2023; received in revised form 2 June 2023; accepted 12 June 2023

Abstract

Humans can attribute beliefs to others. However, it is unknown to what extent this ability results from
an innate biological endowment or from experience accrued through child development, particularly
exposure to language describing others’ mental states. We test the viability of the language exposure
hypothesis by assessing whether models exposed to large quantities of human language display sensi-
tivity to the implied knowledge states of characters in written passages. In pre-registered analyses, we
present a linguistic version of the False Belief Task to both human participants and a large language
model, GPT-3. Both are sensitive to others’ beliefs, but while the language model significantly exceeds
chance behavior, it does not perform as well as the humans nor does it explain the full extent of their
behavior—despite being exposed to more language than a human would in a lifetime. This suggests
that while statistical learning from language exposure may in part explain how humans develop the
ability to reason about the mental states of others, other mechanisms are also responsible.
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1. Introduction

Humans reason about the beliefs of others, even when these beliefs diverge from their
own. The capacity to understand that others’ beliefs can differ from ours—and from the
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truth—appears critical for human social cognition (Fairchild & Papafragou, 2021; Leslie,
2001). Yet despite consensus on the importance of belief attribution, there remains consider-
able debate about its evolutionary (Krupenye & Call, 2019a; Premack & Woodruff, 1978) and
developmental (Bedny, Pascual-Leone, & Saxe, 2009; de Villiers & de Villiers, 2014) origins.
Specifically, how much of this ability results from an innate, biologically evolved adaptation
(Bedny et al., 2009), and how much is assembled from experience (Hughes et al., 2005)?

The answers to these questions may also tell us what kinds of biological and artificial
entities can be expected to display the ability to reason about other agents’ beliefs—and per-
haps display evidence of social cognition more generally. The ability to represent others’
beliefs has sometimes been linked to a broader constellation of abilities called theory of mind
(Apperly, 2012; Premack & Woodruff, 1978). However, the theoretical, convergent, and pre-
dictive validity of such a construct has been widely questioned (Gernsbacher & Yergeau,
2019; Gough, 2021; Hayward & Homer, 2017). We focus more narrowly here on belief attri-
bution; whether or not it is a component of a broader capacity, the ability to attribute beliefs
to others is likely to be crucial to social cognition and worthy of careful analysis in its own
right. We return in our Discussion to the relevance of our results to broader debates about how
belief attribution relates to other capacities.

A leading experience-based view of the origins of belief attribution proposes that our abil-
ity to represent others’ beliefs is built in part from exposure to language (de Villiers & de
Villiers, 2014). Children develop an understanding that others have different mental states
from verbs like “know” and “believe” (Brown, Donelan-McCall, & Dunn, 1996), the structure
of conversation (Harris, 2005), and certain syntactic structures, like sentential complements
(e.g., “Mary thought that Fred went to the movies”; Hale & Tager-Flusberg, 2003).

However, current evidence does not address the question of the extent to which linguistic
input alone can account for the ability to reason about beliefs. Can human-level sensitivity to
the beliefs of others emerge out of exposure to linguistic input by itself, or does it depend on
linking that input to a distinct (possibly innate) mechanism or to non-linguistic experiences
or representations? Answering these questions would require a measure of sensitivity to the
beliefs of others, as well as an operationalization of what kinds of behavior can be acquired
through exposure to language alone.

Only recently has constructing such a measure become tractable, with the advent of large
language models (LLMs). Language models learn to assign probabilities to word sequences
based on statistical patterns in the way that words are distributed in language. While early
n-gram models simply learn transition probabilities between one sequence of words and the
next, modern language models use neural networks to represent words in a multidimensional
meaning space, allowing them to generalize to sequences they have never observed before
(Jurafsky & Martin, 2019). Additionally, they contain attention mechanisms that allow them
to relate words in the input stream to one another and represent each word differently depend-
ing on its context (Vaswani et al., 2017). Modern LLMs are neural language models with
billions of parameters trained on corpora of hundreds of billions of words. We ask whether
LLMs’ considerable sensitivity to distributional patterns allows them to systematically assign
higher probabilities to word sequences that describe plausible belief attribution—a behavior
which is thought to result from reasoning about the beliefs of others in humans.
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As others have noted (Bender & Koller, 2020), the training regime for LLMs does not
include social interaction, experience in a physical environment, or even the notion of
communicative intent.1 Most relevant to the current question, their network architecture is
also not pre-coded with any conception of social agents or the ability to reason about and
attribute beliefs to others. And yet, LLMs have recently been shown to display a range of
surprising behaviors consistent with the acquisition of linguistic structure (Linzen & Baroni,
2021; Manning, Clark, Hewitt, Khandelwal, & Levy, 2020; Sinclair, Jumelet, Zuidema, &
Fernández, 2022) and arguably certain aspects of linguistically conveyed meaning (Abdou
et al., 2021; Li, Nye, & Andreas, 2021). LLMs have also been the subject of recent public
discussion (Johnson, 2022), including speculation that they can acquire something akin
to theory of mind. They thus serve as useful baselines for what kinds of behavior can be
produced merely by exposure to distributional statistics of language in general, and for belief
attribution in particular. Specifically, if LLMs display sensitivity to implied belief states, it
may undermine the claim that other mechanisms (i.e., either an innate biological endowment
or non-linguistic sources of experience) are necessary for the development of this capacity.

In two pre-registered analyses, we investigated whether GPT-3 (Brown et al., 2020), a state-
of-the-art LLM, displayed sensitivity to implied belief states using the widely used False
Belief Task (Wimmer & Perner, 1983). It is worth acknowledging from the outset that the
False Belief Task has been criticized on several grounds (Bloom & German, 2000), both
because it is too narrow (it does not measure participants’ abilities to reason about other
mental states such as emotions and intentions) and too broad (successful performance likely
involves capacities beyond reasoning about beliefs, such as executive function). Our study is
therefore limited in what it can say about LLMs’ sensitivity to other mental states. Moreover,
low performance by either human or LLM participants could be due to lacking other necessary
capacities beyond belief attribution itself. Nonetheless, the False Belief Task remains a key
and extensively used instrument for assessing the capacity to reason about beliefs in humans
(Bradford, Brunsdon, & Ferguson, 2020; Fairchild & Papafragou, 2021; Pluta et al., 2021;
Xie, Cheung, Shen, & Wang, 2018) and other animals (Krupenye & Call, 2019a; Premack
& Woodruff, 1978) as well as the neural underpinnings of this capacity (Schneider, Slaugh-
ter, Becker, & Dux, 2014). It also has the advantage of being implementable using purely
linguistic stimuli, which makes it amenable to comparison between humans and LLMs. It is
important to highlight that human false belief accuracy is rarely perfect, so we do not compare
LLMs to an idealized perfect human participant. Instead, we elicit data from both LLM and
human participants. In addition to analyzing the responses from each group, we also quantify
the extent to which human responses can be predicted by LLM responses.

Our implementation of the False Belief Task involves written text passages in English. We
generated novel False Belief Task stimuli, to ensure that they could not have appeared in
GPT-3’s training data and presented the same stimuli to humans and GPT-3. In each passage,
a character places an object in a Start location, and the object is subsequently moved to an End
location. The key manipulation was the knowledge state of the main character. In the False
Belief condition, the character is not present when the object is moved and is thus unlikely to
know that it has changed location; in the True Belief condition, the character is present and
is thus more likely to know that it is in a new location. To control for other factors that might
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impact belief judgments, we orthogonally counterbalanced whether the first mention and most
recent mention of a location was the Start or End location; we also ensured that the start and
end locations were mentioned an equal number of times in each passage. Humans and the
LLM then completed a cue sentence indicating the character’s belief about the object location.
This knowledge cue was either Explicit (“Sean thinks the book is in the…”) or Implicit (“Sean
goes to get the book from the…”). The correct completion (i.e., the one consistent with the
beliefs of the character) was the End location on True Belief trials and the Start location on
False Belief trials. We measured whether participants responded with the Start or End location
and the relative probability that GPT-3 assigned to the Start location (the log-odds of Start vs.
End).

We ask two key questions. First, are LLMs sensitive to false belief? That is, is GPT-3 suffi-
ciently sensitive to information in a preceding sequence (describing a character’s beliefs) that
it assigns a higher probability to subsequent sequences which describe behavior consistent
with those beliefs versus subsequent sequences describing inconsistent behavior? If so, then
biological and artificial agents could in principle develop behavior consistent with sensitivity
to false beliefs from input-driven mechanisms alone, such as exposure to language (de Villiers
& de Villiers, 2014). Notably, this empirical result could be used either to support claims that
LLMs implicitly represent the belief states of others—as success at the False Belief Task is
often interpreted for infants and non-human animals (Krupenye & Call, 2019a)—or as evi-
dence that the False Belief Task is not a valid measure of mentalizing ability; this issue is
explored in greater detail in the Discussion.

The second question is whether LLMs fully explain human behavior in the False Belief
Task. If so, this would show that language exposure is not only a viable mechanism in general
but that it may in fact be sufficient to explain how humans in particular come to display sensi-
tivity to the belief states of others. Importantly, this would undermine claims that other non-
linguistic resources are necessary to account for the human ability to reason about the beliefs
of others. If LLMs do not fully explain human behavior, however, we infer that humans rely
on some other mechanism not available to the LLM, such as an innate capacity or experience
with more than just language.

All experiments and analyses were pre-registered on the Open Source Framework. The
pre-registered analysis of LLM sensitivity can be found here: https://osf.io/agqwv. The pre-
registration for the human experiment and analysis can be found here: https://osf.io/zp6q8.

2. Method

2.1. False Belief passages

We constructed 12 template passages (items) that conformed to the standard False Belief
Task structure (Wimmer & Perner, 1983). In each, a main character puts an object in a Start
location and a second character moves the object to an End location. The last sentence of
each passage states or implies that the main character believes the object is in some (omit-
ted) location (e.g., “Sean thinks the book is in the....”). We created 16 versions of each item
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(192 passages) that varied across four dimensions. The primary dimension was knowledge
state: whether the main character knows (True Belief) or does not know (False belief) that
the object has changed location; this was manipulated by the main character being present
or not when the second character moved the object. We also manipulated whether the first
mention and most recent mention of a location is the Start or End location; and knowledge
cue: whether the main character’s belief is stated implicitly (e.g., “goes to get the book from
the…”) or explicitly (e.g., “thinks the book is in the…”). Each location was mentioned twice
in each passage. In the example passages, below, the first mention is to the Start location and
the recent mention is to the End location.

True Belief Passage: “Sean is reading a book. When he is done, he puts the book in
the box and picks up a sweater from the basket. Then, Anna comes into the room. Sean
watches Anna move the book from the box to the basket. Sean leaves to get something to
eat in the kitchen. Sean comes back into the room and wants to read more of his book.”

False Belief Passage: “Sean is reading a book. When he is done, he puts the book in
the box and picks up a sweater from the basket. Then, Anna comes into the room. Sean
leaves to get something to eat in the kitchen. While he is away, Anna moves the book
from the box to the basket. Sean comes back into the room and wants to read more of
his book.”

Implicit Cue: “Sean goes to get the book from the....”

Explicit Cue: “Sean thinks the book is in the....”

2.2. GPT-3 log-odds

We used GPT-3 text-davinci-002 to estimate the distributional likelihood of different pas-
sage completions. GPT-3 text-davinci-002 is based on GPT-3 davinci (Brown et al., 2020),
a 175B unidirectional LLM trained on hundreds of billions of tokens of text from the web,
books, and Wikipedia. GPT-3 text-davinci-002 (hereafter GPT-3) is additionally fine-tuned
on requests to follow instructions and performs better on a variety of tasks than the original
GPT-3 davinci (OpenAI, 2023b). We elicited from GPT-3 the log probability of each possible
location (Start vs. End) at the end of each passage version, equal to the log probabilities of
those locations in a free-response completion. Where a location comprised multiple tokens
we summed the log probabilities. We accessed GPT-3 through the OpenAI API. Using the
log-odds ratio, log(p(Start)) − log(p(End)), higher values indicate larger relative probabili-
ties of the Start location. Each passage version was presented to GPT-3 independently, and
the model was not updated during inference so it did not learn across trials.

2.3. Human participant responses

A total number of 1156 participants from Amazon’s Mechanical Turk platform were paid
$1 for their time. Each read a single passage (except the final sentence) at their own pace. On
a new page, they were asked to complete the final sentence of the passage by entering a single
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word in a free-response text input. Participants then completed two free-response attention
check questions that asked for the true location of the object at the start and the end of the
passage. Each participant completed only one trial to prevent them from learning across the
experiment, analogously to GPT-3, which saw each passage individually and could not learn
across trials.

We preprocessed responses by lowercasing and removing punctuation, stopwords, and
trailing whitespace. We excluded participants who were non-native English speakers (13),
answered ≥ 1 attention check incorrectly (513), or answered the sentence completion with a
word that was not the start or end location (17), retaining 613 trials. While this exclusion rate
is unusually high, 75% of incorrect attention check responses were neither the start nor end
location, indicating inattention. We implemented a parallel check for GPT-3, which responded
correctly to both attention check questions on 86% of items. In our Supporting Information,
we report additional analyses on incorrect responses and excluded data. After exclusions, the
number of trials per item ranged from 42 to 60, and there were 313 False Belief trials and
317 True Belief trials. These pre-registered exclusion criteria reduced the likelihood that bots
(Webb & Tangney, 2022) as well as participants who did not successfully comprehend the
passage for any reason were included in the human data.

All research was approved by the organization’s Institutional Review Board.

3. Results

3.1. Analysis of large language model behavior

In a pre-registered analysis, nested model comparisons determined whether GPT-3 log-
odds changed as a function of factors such as knowledge state (False Belief vs. True Belief).
We constructed a linear mixed effects model with log-odds as a dependent variable; fixed
effects of knowledge state, knowledge cue, first mention, and recent mention; along with
by-item random slopes for the effect of knowledge state (and random intercepts for items).
This full model exhibited better fit than a model excluding only knowledge state [χ2(1) =
18.6, p < .001], but still preserving the other covariates (e.g., first mention, recent mention,
and knowledge cue). Log-odds were lower in the True Belief condition, reflecting the correct
prediction that characters should be more likely to look in the End location if they are aware
that the object was moved (see Fig. 1). Critically, this main effect of knowledge state indicates
that GPT-3 is sensitive to the manipulation of a character’s beliefs about where an object is
located. The model’s raw accuracy when predicting the most probable out of the Start and
End locations was 74.5%.

Additionally, the linear mixed effects model was further improved by an interaction
between knowledge state and knowledge cue (Explicit vs. Implicit) [χ2(1) = 20.6, p <

0.001]. The effect of knowledge state was stronger in the Implicit condition [β =
−2.57, SE = 0.548]; however, a main effect of knowledge state was found in both the
Explicit [χ2(1) = 13.3, p < .001] and Implicit [χ2(1) = 18.8, p < .001] conditions. Recent
mention was not a significant predictor of log-odds. However, Start completions were more
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Fig. 1. GPT-3 log-odds of Start versus End location was higher (i.e., Start was relatively more likely) in the False
Belief than True Belief condition [χ 2(1) = 18.6, p < .001]. This suggests that GPT-3’s predictions are sensitive
to the character’s implied belief state: the character is unaware that the object has moved to the End location if
they did not observe it being moved. This effect was observed both when the knowledge cue was Implicit (“Sean
goes to get the book from the…”) and Explicit (“Sean thinks the book is in the…”); however, the effect was
strengthened in the Implicit condition [χ 2(1) = 20.6, p < 0.001].

likely when the Start location was mentioned first [β = 1.32, SE = 0.274, p < 0.001]. There
was also a main effect of knowledge cue [β = −2.93, SE = 0.388, p < .001] (see Fig. 1).
GPT-3 was biased towards the End location (i.e., the true location of the object) in the Implicit
condition and towards the Start location in the Explicit condition. Concretely, GPT-3 predicts
that explicit cues to belief state (e.g., “Sean thinks that the book is in the…” vs. “Sean goes to
get the book from the…”) correlate with false beliefs, demonstrating that this may be learn-
able from the statistics of language.

3.2. Analysis of human responses

Our second critical pre-registered question was whether knowledge state continued
to explain human behavior even accounting for the log-odds obtained from GPT-3. We
first constructed a base model predicting whether or not human participants responded
with the Start location. Note that the Start location would be the correct response (i.e.,
congruent with knowledge states) in the False Belief condition, and the End location
would be the correct response in the True Belief condition. The base model contained
fixed effects of log-odds (i.e., from GPT-3), knowledge cue, first mention, and recent
mention, along with by-item random slopes for the effect of knowledge state (and by-
item random intercepts). Critically, this base model was significantly improved by adding
knowledge state as a predictor [χ2(1) = 30.4, p < 0.001]. This result implies that human
responses are influenced by knowledge state in a way that is not captured by GPT-3.
That is, GPT-3 cannot fully account for human sensitivity to knowledge states. This is

 15516709, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13309, W

iley O
nline L

ibrary on [14/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 21 S. Trott et al. / Cognitive Science 47 (2023)

Fig. 2. Both human participants and GPT-3 were more likely to say that a character believed an object was in the
Start location when the character had not observed the object being moved to the End location (False Belief). This
effect was stronger for humans than for GPT-3, and there was a marginal effect of knowledge state (True vs. False
Belief) in humans that could not be accounted for by GPT-3 predictions [χ 2(1) = 30.4, p < 0.001].

highlighted by the contrast in Fig. 2: while both human participants and GPT-3 were
sensitive to knowledge state, humans displayed a much stronger effect across condi-
tions. Additionally, mean accuracy among retained human participants (82.7%) was
also higher than GPT-3 accuracy (74.5%), providing further evidence of a performance
gap.

In order to test whether the high exclusion rate introduced by our attention check ques-
tions had an impact on results, we performed an exploratory analysis on all human response
data. Accuracy before exclusions (including those who failed the attention checks and pro-
vided responses to neither the start or end locations) was 55.8%. After excluding responses
that were neither of the start and end locations (23%), accuracy was 73.1%. It is notewor-
thy that this estimate of human accuracy is lower than GPT-3’s performance. However, this
analysis was not pre-registered. Moreover, given existing concerns about data quality on the
Mechanical Turk platform (Webb & Tangney, 2022), and the fact that performance on the FB
task by neurotypical adults is often assumed to be at ceiling (Dodell-Feder, Lincoln, Coul-
son, & Hooker, 2013), the retained data likely provide a better estimate of attentive human
participant performance.

3.3. Analysis of GPT-3 token predictions

The pre-registered tasks for humans and the LLM were slightly different—humans filled
in a single predicted word while we calculated the relative surprisal to two different words
presented to GPT-3. To investigate whether differences in performance could be chalked
up to this difference in method, we conducted an additional, exploratory analysis, in which
we elicited token predictions from GPT-3. Specifically, GPT-3 was presented with the
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original passage ending with the critical sentence (e.g., “Sean goes to get the book from
the”), then asked to predict the upcoming word. We sampled the word (e.g., “box”) with the
top probability. We automatically tagged each response as correct or incorrect by checking
whether GPT-3’s response corresponded to the character’s likely belief state about the object.
That is, in the True Belief condition, the correct response would be the End location of the
object; in the False Belief condition, the correct response would be the Start location of the
object. When computing GPT-3 accuracy, this token generation method only differed from
the pre-registered method in that GPT-3’s prediction was no longer restricted to the Start or
End location. Using the token generation method did not qualitatively change the results. As
reported above, when assessing accuracy with the pre-registered method—relative probability
assigned to start versus end locations—GPT-3 performed at 74.5% accuracy. When assessing
accuracy using the more human-comparable procedure, token generation, GPT-3 performed
at 73.4% accuracy, still well above chance yet now slightly farther below human accuracy.

In order to test what features of LLMs permit them to display the behaviors described
above, we also tested a number of different GPT-3 models ranging in size from ada (∼ 350M
parameters) to davinci (∼175B parameters). For each model size, we tested a base ver-
sion, pre-trained on a large corpus of text, and a text version, which had additionally been
fine-tuned by OpenAI using responses to human instructions. The largest fine-tuned model
was text-davinci-002, which was the same model we used in the pre-registered analysis
described above.

As expected, the largest models (davinci, and updated variant text-002-davinci) exhibited
the most successful performance. The former answered correctly on 60.4% of items, while
the latter answered correctly on 73.4% of items. The model with the worst performance was
text-001-ada, which was also the smallest model (see also Fig. 3). The smallest and lowest-
performing models did not exceed chance performance, which emphasizes the need for large,
powerful models to succeed at this task as well as the potential, as models continue to increase
in size, for LLM improvement.

4. Discussion

We asked whether exposure to linguistic input alone could account for human sensitiv-
ity to knowledge states. We found that GPT-3’s predictions were sensitive to a character’s
implied knowledge states. When assessing accuracy with the relative probability assigned to
start versus end locations, GPT-3 performed at approximately 74.5% accuracy. When assess-
ing accuracy using token generation, the best GPT-3 model performed at 73.4% accuracy.
This demonstrates that exposure to linguistic input alone can in principle account for some
sensitivity to false belief.

However, GPT-3 was less sensitive than humans (who displayed 82.7% accuracy—see
also probabilities in Fig. 2). Most critically, human behavior was not explained fully by that
of GPT-3 in a statistical model. This entails that the capacities underlying human behavior in
this False Belief task cannot be explained purely by exposure to language statistics—at least
insofar as those statistics are reflected in GPT-3.
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Fig. 3. A number of GPT-3 models varying in size were presented with each passage and asked to complete
the critical sentence, as human participants did. For each model size, we tested a pre-trained base model (©)
and a version fine-tuned by OpenAI to follow text instructions (�). In the True Belief condition, a correct
(i.e., knowledge-congruent) response corresponded to the End location of the object; in the False Belief condi-
tion, a correct (i.e., knowledge-congruent) response corresponded to the Start location of the object. The dotted
red line represents human accuracy on the task (82.7%); text-davinci-002—the largest fine-tuned model—came
the closest to approaching human behavior, with an accuracy of 73.4%.

4.1. Do LLMs attribute beliefs?

With increased academic and public attention on how humanlike LLMs are, it is worth
considering what these findings imply about the cognitive capacities of AIs. First, it is impor-
tant to note that—as mentioned in the Introduction—the False Belief Task is designed to
measure a specific capacity: the ability to reason about the belief states of others and use
that information to make predictions about their behavior. The current work cannot address
whether LLMs display other purported aspects of theory of mind, including inferring implicit
emotional states and reasoning about the intended interpretation of an utterance; this issue is
explored at greater length later in the Discussion.

On the specific question of whether LLMs are sensitive to belief states, the evidence
presented here is mixed. State-of-the-art models display sensitivity to the beliefs of oth-
ers in a False Belief Task, a behavior that would have been unthinkable a few years
ago from a statistical learner and indeed is only shown by the largest, highest per-
forming LLMs. Yet they still do not achieve human-level performance. There are sev-
eral possible interpretations of this result, each of which carries significant consequences
for the broader debate about the nature and origins of the ability to attribute belief
states.
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4.1.1. Competing interpretations
One interpretation, which we call the duck test position, is that we should ascribe cog-

nitive properties to agents based on observable behavioral criteria: “if it looks like a duck,
swims like a duck, and quacks like a duck, then it probably is a duck”; this view is roughly
analogous to what is sometimes called the superficial view (Schwitzgebel, 2013; Shevlin,
2022) or the intentional stance (Dennett, 1978). False Belief Task performance has been
used to support claims that infants (Baillargeon, Scott, & He, 2010) and non-human animals
(Krupenye, Kano, Hirata, Call, & Tomasello, 2016) can represent the beliefs of others. The
duck test view argues that the same evidence should be equally persuasive in the case of
intelligent artificial agents. Although LLMs do not show the same sensitivity to belief states
that humans do, this could suggest that LLMs display a less developed form of the ability to
attribute belief states that is nonetheless qualitatively similar to that of humans. Under this
interpretation, the ability to attribute and reason about belief states lies on a continuum, and
further developments in LLMs (e.g., larger models, more training data) could lead them to
more closely approximate human behavior (Kaplan et al., 2020).

The duck test view has two important implications for debates around language models
and false belief sensitivity, respectively. First, on this view we should ascribe to language
models the ability to reason about beliefs (albeit to a lesser extent than humans); as others
have noted (Kosinski, 2023), this would elevate their importance as social and intelligent
agents in their own right. Second, if language experience alone is sufficient to develop the
ability to reason about beliefs, this undermines claims that any innate endowment or social
experience is necessary.

The alternative interpretation, which we call the axiomatic rejection position, holds that
we should deny a priori that language models can display certain abilities—such as the abil-
ity to reason about the mental states of others—due to the nature of their constitution, for
example, their lack of embodiment, grounding, agency, or embeddedness in an interactive
social environment (Bender & Koller, 2020; Searle, 1980). If this view is correct, then GPT-
3’s success at the False Belief Task must be taken as evidence that the task itself is a flawed
instrument for measuring the ability to attribute belief states (Raji, Bender, Paullada, Den-
ton, & Hanna, 2021). On this view, LLMs’ better-than-chance performance could perhaps
be achieved by other means—e.g., an unintended Clever Hans effect, in which the LLM
exploits unidentified confounds in the stimuli (Niven & Kao, 2019)—that do not reflect a
capacity equivalent to the one the task was designed to measure. Accordingly, “passing” the
test would constitute a kind of reductio ad absurdum of the test’s validity; similar “proofs by
absurdity” have been used to demonstrate potential flaws in other instruments, such as fMRI
(Bennett, Miller, & Wolford, 2009) and measures of survey validity (Maul, 2017). Under this
interpretation, the current results could be used to support existing critiques of the use of
the False Belief Task (Bloom & German, 2000). An important secondary implication of the
axiomatic rejection view is that no empirical behavioral evidence could resolve a debate about
whether a given class of intelligent agents have the ability to reason about the mental states of
others.

Of course, a third possibility would be to adopt a view that navigates between the duck
test and axiomatic rejection positions. For example, one could argue that LLMs are indeed
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a priori incapable of attributing and representing belief states (as in the axiomatic rejection
view), but that this does not necessarily invalidate the utility of the tests for human subjects.
This differential construct validity view is roughly the one adopted by Ullman (2023) in
a response to related contemporary work (Kosinski, 2023). Considering this dilemma with
respect to the broader question of theory of mind (ToM), Ullman (2023, p. 9) writes,

…one can in principle hold the view that LLMs do not have ToM, while still thinking
that ToM tests are valid when it comes to people…scholars have pointed out decades
ago that people likely attribute intelligence not just on the basis of behavior but also on
the basis of the algorithms and processes that generated that behavior.

This emphasis on internal states (as opposed to just behavior) is sometimes called psychol-
ogism (Block, 1981) and is typically seen as at odds with purely behaviorist or functionalist
accounts of the mind (Block, 1980). If one adopts this internalist account of belief sensitivity,
the question is thus whether LLMs and humans do indeed use different processes and mental
representations to solve the False Belief Task. A further, deeper question is at what degree of
granularity this issue of equivalent mental processes ought to be defined and operationalized.
As Block (1980) notes, operationalization at the level of observable behavior (or high-level
function) may be overly liberal in terms of which entities are granted mind-likeness—yet
the functionalist rejoinder is that excessive specificity may be chauvinistic in terms of which
entities it excludes.

While it may sound unlikely that LLMs use similar representations to solve the False
Belief Task as humans, this is ultimately an empirical question and should be tested with
further experimentation and probing. If this future work indicates that LLMs do in fact use
similar processes as humans, researchers must then decide whether these processes ought to
be described as belief attribution—in both humans and LLMs—or whether they are more
appropriately characterized as emerging from a suite of domain-general, “lower-level” pro-
cesses,for example, what Heyes (2014) calls submentalizing. Alternatively, if empirical prob-
ing uncovers distinct strategies in humans and LLMs, consistent with the differential con-
struct validity view, researchers would be able to preserve both the False Belief Task as an
instrument and the view that LLMs do not reason about belief states in a manner analogous
to humans.

We do not explicitly endorse any of the competing interpretations presented here. In our
view, there are persuasive arguments from all sides, and the evidence presented here and
in related work (Kosinski, 2023) cannot adjudicate between them. As noted above, resolv-
ing this debate will require both greater refinement of the underlying theoretical construct
(i.e., belief attribution) and the instruments used to measure it. This process may be informed
by insights from work in comparative cognition, which we turn to below.

4.1.2. Insights from comparative cognition
A similar debate can be found in research on whether infants and nonhuman animals have

the ability to attribute and represent belief states. For example, in recent years, evidence has
accrued that certain great apes (e.g., chimpanzees) exhibit behavior consistent with this ability
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(Hare, Call, Agnetta, & Tomasello, 2000; Krupenye & Call, 2019b; Krupenye, Kano, Hirata,
Call, & Tomasello, 2016); however, there remains considerable debate over whether this
evidence is necessarily indicative of the underlying capacity, or whether identical behavior
could in principle be explained by other mechanisms (Halina, 2015; Penn & Povinelli, 2007).
Certain aspects of this debate resemble the competing interpretations described above, namely
the question of whether we ought to adopt an intentional stance with respect to non-human
animals’ ability to ascribe belief states (Dennett, 1987; analogous to the duck test position),
or whether a more deflationary account involving domain-general, low-level processes (e.g.,
submentalizing) is more appropriate (Heyes, 2014).

In particular, one view emphasizes the fact that most evidence consistent with belief attri-
bution (or “mindreading”) in nonhuman animals is also consistent with the hypothesis that
nonhuman animals are simply responding to observable behavioral regularities, without
attributing or representing latent mental states at all. This view is sometimes called the
“logical problem” (Halina, 2015; Lurz, 2009) and holds that this simpler null hypothesis—
i.e., that nonhuman animals are engaging in “complementary behavior reading” rather than
“mindreading”—must first be rejected (Penn & Povinelli, 2007; Povinelli & Vonk, 2004).

Of course, as Halina (2015) notes, any individual capable of belief attribution presum-
ably still does so on the basis of observable behavior, which makes adjudicating between
these competing interpretations (i.e., identifying veridical belief attribution) very challeng-
ing. Halina (2015, p. 485) suggests that the challenge can be surmounted by employing a
range of different experiments with diverse techniques and distinct “observables”:

Doing so provides evidence for mindreading insofar as it establishes that subjects are
responding to a diverse set of observable variables (eyes closed, opaque barrier present,
head turned) as belonging to the same abstract equivalence class (situations that lead to
a state of not seeing).

The fact that this issue is still under debate in the comparative cognition literature
(Povinelli, 2020) suggests that resolving the question for LLMs will likely prove a serious
challenge in the years to come; as noted in the previous section, it is also possible that the rel-
evant philosophical theories (e.g., functionalism, psychologism, etc.) will prove impossible
to adjudicate between Block (1980).

Moving forward, however, we argue that the strategy presented by Halina (2015) above
seems like a promising and tractable approach: if LLMs exhibit behavior consistent with
belief attribution in a wide range of experiments using a diverse class of stimuli, then it makes
sense to ascribe to them the capacity to attribute and represent belief states—assuming, that
is, that we would do the same for human participants in those same experiments (Dennett,
1978, 1987).

4.2. What can belief sensitivity tell us about theory of mind?

In the current work, we have restricted our claims to the question of sensitivity to true and
false beliefs. However, this ability to represent the belief states of others is sometimes viewed
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as part of a broader set of abilities—alternatively called mindreading, mentalizing, or theory
of mind (Apperly, 2012). A question of growing concern in the field is whether theory of mind
writ large is a coherent theoretical construct that offers explanatory value, or whether it is a
convenient abstraction consisting of disparate, loosely related skills. One way to tackle this
question is to consider the convergent and predictive validity of distinct instruments designed
to measure theory of mind.

Theory of mind is an extraordinarily broad construct, and, accordingly, instruments have
been designed to assess distinct components: reasoning about false beliefs (Wimmer &
Perner, 1983), explaining or interpreting behavior in stories (Dodell-Feder et al., 2013; Happé,
1994), inferring emotional states from pictures (Baron-Cohen, Wheelwright, Hill, Raste, &
Plumb, 2001), attributing mental states to animated shapes (Abell, Happe, & Frith, 2000), and
more. Unfortunately, these tasks often display poor convergent validity: that is, performance
on one task does not reliably correlate with performance on another (Gernsbacher & Yergeau,
2019; Gough, 2021; Hayward & Homer, 2017). Of course, tasks do converge in some cases;
for example, performance on the short story task (Dodell-Feder et al., 2013) has been shown
to correlate with performance on reading the mind in the eyes task (Baron-Cohen et al., 2001)
(see Giordano et al., 2019; Dodell-Feder et al., 2013). However, the fact that convergent valid-
ity is so low in general (Gernsbacher & Yergeau, 2019; Hayward & Homer, 2017) suggests
that these tasks are not, in fact, measuring the same thing—calling the coherence of “theory
of mind” into question. As Gernsbacher and Yergeau (2019) note, some of these instruments
also display poor predictive validity: that is, they do not reliably predict measures of behavior
in social settings. Both facts are discouraging with respect to the question of whether theory
of mind is a coherent construct: if tasks designed to measure it do not correlate with each other
or with social behavior more generally, there is little justification for unifying these disparate
abilities under a single “umbrella term.”

While the empirical evidence presented in this paper clearly cannot settle this question,
future work in this vein could contribute to the debate. Specifically, the performance of an
LLM could be assessed across a battery of tasks designed to assess theory of mind (see
also Kosinski, 2023), using a human benchmark in each case. Using this method, researchers
could ask to what extent performance on each measure could be explained in principle by
distributional statistics alone (as in the current work) and, crucially, to what extent these tasks
display convergent validity in humans and LLMs. This would provide another robust test of
the coherence of theory of mind as a construct; the results may help inform debates about
whether we ought adopt a pluralist or eliminativist view of theory of mind (Gough, 2021),
particularly when it comes to LLMs.

4.3. Using LLMs to study human comprehenders

The current work used GPT-3, an LLM, as a baseline for quantifying the extent to which
human-level performance on the False Belief Task could be attributed to exposure to language
statistics alone. This approach echoes past work using language models as “psycholinguistic
subjects” (Futrell, Wilcox, Morita, & Levy, 2018; Jones et al., 2022; Linzen & Baroni,
2021; Michaelov, Coulson, & Bergen, 2022; Trott & Bergen, 2021) to investigate whether
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distributional language statistics are sufficient in principle to explain human-level behavior
at a task. Other contemporaneous work (Kosinski, 2023; Sap, LeBras, Fried, & Choi, 2022;
Ullman, 2023) has asked whether LLMs exhibit evidence of theory of mind specifically.
This LLM comparison approach allows us to empirically test theories that other sorts of
innate capacities and learned experiences are necessary to display behavior consistent with
belief attribution. However, there are important objections to using LLM performance
to evaluate the claim that distributional information underlies human belief sensitivity in
practice.

First, there are many differences between human comprehenders and LLMs which mean
that the latter may not provide a psychologically plausible mechanism for the former. Some
of these differences—the fact that humans are exposed to language in a rich social and multi-
modal context—might allow children to learn more from the same distributional information
than models can. Our approach is designed to measure the sufficiency of distributional infor-
mation in the absence of this scaffolding. Other differences, however, may artificially inflate
estimates of how much could be learned by humans from language alone. Most notably, mod-
ern LLMs are trained on orders of magnitude more words than a human will see in their life-
time (Ullman, 2023). Children are estimated to be exposed to around 3–11 million words per
year, for a total of 30–110 million words by the time they reach adult-like linguistic compe-
tence at age 10 (Hart & Risley, 1992; Hosseini et al., 2022). By contrast, GPT-3—the model
used in our analysis—has been exposed to more than 200 billion words: ∼ 2000 times that of
a 10 year old (Warstadt & Bowman, 2022).

If this scale of data is necessary to learn the nuanced statistical contingencies required for
successful performance at a task, it would undermine the inference that LLM performance
is indicative of what humans could do with distributional information. Importantly, however,
LLM performance is also related to the number of parameters in the model. In our exploratory
analyses, we found that the largest GPT-3 models tested (text-davinci-002) performed much
better on the False Belief Task than smaller models, consistent with past work suggesting that
LLMs may obey certain “scaling laws” (Kaplan et al., 2020). The differential effects of model
parameter count and training dataset size on False Belief Task performance remain unclear;
very large models (or a human brain with hundreds of trillions of synapses) could potentially
perform similarly to GPT-3 using less data.2 A useful approach here would be to compare
the predictive power of LLMs trained with different amounts (and sources) of training data to
determine whether a “developmentally realistic” amount of training data could yield behavior
consistent with the capacity in question (Hosseini et al., 2022).

These questions will become even more critical in the near future. LLMs will continue to
increase in size and will be trained on larger datasets—orders of magnitude more words than
a human is exposed to in a lifetime.3 If machines behave indistinguishably from humans on
these tasks, the question of whether achievement on the False Belief Task itself constitutes
sufficient evidence for false belief sensitivity will raise deep philosophical questions for the
field: should such LLMs be considered “agents” capable of reasoning about the belief states
of others, or should these demonstrations force us to reevaluate the utility of the instruments
we use to measure these cognitive capacities?
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Even if developmentally plausible models do show humanlike behavior at a task, this does
not imply that humans are using the same statistical mechanism as these models. There
could be multiple distinct routes to the same behavior, and humans could in fact be using
innate or domain-specific mentalizing capacities to produce behavior that models learn to
imitate from language statistics. Even insofar as humans do use distributional information to
make inferences about beliefs, there are a variety of plausible mechanisms for this, includ-
ing domain-general statistical learning (Aslin, 2017), language-specific predictive processing
(Heilbron, Armeni, Schoffelen, Hagoort, & De Lange, 2022), and innate but non-statistical
inferential mechanisms (Penn, Holyoak, & Povinelli, 2008). The specific mechanistic theory
operationalized by LLMs is that humans use language statistics to predict upcoming input.
Results showing that LLM representations can predict up to 100% of explainable variance in
brain activity have been taken as evidence for this hypothesis (Schrimpf et al., 2021). How-
ever, Antonello and Huth (2022) show that statistical language representations learned for
other objectives (e.g., translation) are similarly predictive of human brain responses, imply-
ing that the correlation of human and LLM data may be due to features of language statis-
tics generally rather than a close mechanistic similarity. In order to adjudicate between these
accounts, researchers will need to identify and empirically test divergent predictions of these
mechanistic accounts.

One benefit to using LLMs as an operationalization of a theory is that, as models, they
offer more opportunities for testing various more specific mechanisms or hypotheses. For
example, what kinds of language input are most critical for developing the ability to rea-
son about mental states? Past work has argued for the importance of at least three dis-
tinct sources, including exposure to mental state verbs (Brown et al., 1996), the structure
of interactive conversation (Harris, 2005), and certain syntactic constructions (Hale & Tager-
Flusberg, 2003). Future work could compare different models with different training corpora
(e.g., primarily dialogue vs. essays) to help isolate how much information is provided by each
source of linguistic experience.

While these objections highlight the importance of future theoretical and empirical work,
we believe that evidence for the sufficiency of distributional information for competent False
Belief task performance is a critical step toward assessing the plausibility of experience-based
theories of belief attribution in humans.

5. Conclusion

Where does the human ability to reason about beliefs of others come from? It could emerge
in part from an innate, biologically evolved capacity (Bedny et al., 2009). It might also depend
on experience, including language input (de Villiers & de Villiers, 2014). The current results
help quantify the contribution of language input. On a text-based version of the False Belief
Task, humans responded correctly (i.e., in a manner congruent with a character’s belief states)
82.7% of the time, while the largest LLM tested responded correctly 74.5% of the time;
additionally, LLM behavior did not fully explain human behavior. This suggests that language
statistics alone are sufficient to generate some sensitivity to false belief but, crucially, not to
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fully account for human sensitivity to false belief. Thus, the ability of humans to attribute
mental states to others may involve linking this linguistic input to innate capacities or to other
embodied or social experiences.

Open Research Badges

This article has earned Open Data, Open Materials badges, and pre-registered.
Data and materials are available at https://osf.io/hu865/ and pre-registered are available at
https://osf.io/zp6q8, https://osf.io/agqwv.

Notes

1 Recently, pre-trained language models have been fine-tuned using Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang et al., 2022). This process arguably leads
to a training signal that is not purely based on distributional language statistics and so we
do not use RLHF models in this analysis.

2 While it is difficult and problematic to compare the computational power of neural net-
works and human brains, an estimated 1.5 × 1014 synapses in the human adult neocortex
(Drachman, 2005) is ∼ 850 times the number of parameters in GPT-3 (1.75 × 1011)

3 Indeed, in the course of revising this article, GPT-4 was released, achieving substantially
higher scores on a range of different psychometric tests (OpenAI, 2023a).
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